Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Biofilms and Microbiomes
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj biofilms and microbiomes
  3. articles
  4. article
Dysbiosis of oral and gut microbiomes characterized by elevated Lactococcus in a mouse model of oral squamous cell carcinoma
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Dysbiosis of oral and gut microbiomes characterized by elevated Lactococcus in a mouse model of oral squamous cell carcinoma

  • Euon Jung Tak1,
  • Beom-Jin Goo1,
  • Jae-Yun Lee1,
  • Jeong Eun Han1,
  • Yun-Seok Jeong1,
  • Hae-In Joe1,
  • Hojun Sung1,
  • Hyun Sik Kim1 &
  • …
  • Jin-Woo Bae1 

npj Biofilms and Microbiomes , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacteria
  • Microbial communities
  • Metagenomics

Abstract

Oral microorganisms contribute to the progression of oral squamous cell carcinoma (OSCC), and the gut microbiome may also influence OSCC by modulating systemic immunity. This study investigated oral and gut microbial changes in a 4-nitroquinoline N-oxide (4-NQO)-induced OSCC mouse model. After 16 weeks of 4-NQO exposure, significant alterations were observed in the beta diversity of both oral and gut microbiomes. Notably, the relative abundance of Lactococcus increased, especially in oral microbiomes, from week 6 to 16, followed by a decline at week 22, suggesting a 4-NQO-induced niche favorable to its proliferation. Absolute quantification revealed a 4-NQO-induced increase in total bacterial load in the oral cavity, accompanied by elevated absolute abundance of Lactococcus. Unexpectedly, oral administration of Lactococcus strains isolated from 4-NQO-treated mice mildly alleviated inflammation. In vitro, lysates from these strains exhibited protein-dependent cytotoxicity against murine OSCC cells. These results suggest that Lactococcus strains may exert protective effects during OSCC progression.

Similar content being viewed by others

A dysbiotic microbiome promotes head and neck squamous cell carcinoma

Article 28 January 2022

Oral microbiome associated with lymph node metastasis in oral squamous cell carcinoma

Article Open access 30 November 2021

Oral microbiome and mycobiome dynamics in cancer therapy-induced oral mucositis

Article Open access 20 March 2025

Data availability

All data used in this study are available in the main text and supplementary materials. Sequencing data associated with this study have been deposited in NCBI under BioProject PRJNA1143182 and PRJNA1143175.

References

  1. Johnson, D. E. et al. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Prim. 6, 92 (2020).

    Google Scholar 

  2. Mody, M. D., Rocco, J. W., Yom, S. S., Haddad, R. I. & Saba, N. F. Head and neck cancer. Lancet 398, 2289–2299 (2021).

    Google Scholar 

  3. Tan, Y. et al. Oral squamous cell carcinomas: state of the field and emerging directions. Int. J. Oral. Sci. 15, 44 (2023).

    Google Scholar 

  4. Markopoulos, A. K. Current aspects on oral squamous cell carcinoma. Open Dent. J. 6, 126 (2012).

    Google Scholar 

  5. Ramadan, S. et al. Trends in incidence of oral cavity squamous cell carcinoma in the United States 2001–2019. Surg. Oncol. Insight 1, 100055 (2024).

  6. Cai, L. et al. Integrative analysis reveals associations between oral microbiota dysbiosis and host genetic and epigenetic aberrations in oral cavity squamous cell carcinoma. npj Biofilms Microbiomes 10, 39 (2024).

    Google Scholar 

  7. Stashenko, P. et al. The oral mouse microbiome promotes tumorigenesis in oral squamous cell carcinoma. Msystems 4, 00323–00319, https://doi.org/10.1128/msystems (2019).

    Google Scholar 

  8. Chen, Y.-L. et al. Microbiome dysbiosis inhibits carcinogen-induced murine oral tumorigenesis. J. Cancer 13, 3051 (2022).

    Google Scholar 

  9. Frank, D. N. et al. A dysbiotic microbiome promotes head and neck squamous cell carcinoma. Oncogene 41, 1269–1280 (2022).

    Google Scholar 

  10. Medeiros, M. C. D. et al. Salivary microbiome changes distinguish response to chemoradiotherapy in patients with oral cancer. Microbiome 11, 268 (2023).

    Google Scholar 

  11. Rui, M. et al. The baseline oral microbiota predicts the response of locally advanced oral squamous cell carcinoma patients to induction chemotherapy: a prospective longitudinal study. Radiother. Oncol. 164, 83–91 (2021).

    Google Scholar 

  12. Cani, P. D. Gut microbiota — at the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 14, 321–322 (2017).

    Google Scholar 

  13. Sommer, F. & Bäckhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Google Scholar 

  14. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    Google Scholar 

  15. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Google Scholar 

  16. Arima, Y. et al. 4-Nitroquinoline 1-oxide forms 8-hydroxydeoxyguanosine in human fibroblasts through reactive oxygen species. Toxicol. Sci. 91, 382–392 (2006).

    Google Scholar 

  17. Kanojia, D. & Vaidya, M. M. 4-nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral. Oncol. 42, 655–667 (2006).

    Google Scholar 

  18. Li, Q. et al. Mouse tumor-bearing models as preclinical study platforms for oral squamous cell carcinoma. Front. Oncol. 10, 212 (2020).

    Google Scholar 

  19. Sequeira, I. et al. Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology. Nat. Commun. 11, 5671 (2020).

    Google Scholar 

  20. Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724.e1712 (2009).

    Google Scholar 

  21. Zlotkin, A., Eldar, A., Ghittino, C. & Bercovier, H. Identification of Lactococcus garvieae by PCR. J. Clin. Microbiol. 36, 983–985 (1998).

    Google Scholar 

  22. Cusick, S. M. & O’Sullivan, D. J. Use of a single, triplicate arbitrarily primed-PCR procedure for molecular fingerprinting of lactic acid bacteria. Appl. Environ. Microbiol. 66, 2227–2231 (2000).

    Google Scholar 

  23. Afrizal, A. et al. Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host microbe 30, 1630–1645.e1625 (2022).

    Google Scholar 

  24. Oren, A. & Göker, M. Validation List no. 213. Valid publication of new names and new combinations effectively published outside the IJSEM. Int. J. Syst. Evol. Microbiol. 73 (2023). https://doi.org/10.1099/ijsem.0.005997

  25. Li, X. et al. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 7, 305 (2022).

    Google Scholar 

  26. Certo, M., Tsai, C.-H., Pucino, V., Ho, P.-C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).

    Google Scholar 

  27. Vitetta, L., Coulson, S., Thomsen, M., Nguyen, T. & Hall, S. Probiotics, D–Lactic acidosis, oxidative stress and strain specificity. Gut Microbes 8, 311–322 (2017).

    Google Scholar 

  28. Abedi, E. & Hashemi, S. M. B. Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 6 (2020).

  29. Chang, D.-H. et al. Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse. Antonie Van. Leeuwenhoek 108, 1309–1318 (2015).

    Google Scholar 

  30. Zagato, E. et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat. Microbiol. 5, 511–524 (2020).

    Google Scholar 

  31. Han, H. et al. 4-NQO induces apoptosis via p53-dependent mitochondrial signaling pathway. Toxicology 230, 151–163 (2007).

    Google Scholar 

  32. Su, A. C. Y. et al. Lactococcus lactis HkyuLL 10 suppresses colorectal tumourigenesis and restores gut microbiota through its generated alpha-mannosidase. Gut 73, 1478–1488 (2024).

    Google Scholar 

  33. Meucci, A. et al. Lactococcus hircilactis sp. nov. and Lactococcus laudensis sp. nov., isolated from milk. Int. J. Syst. Evolut. Microbiol. 65, 2091–2096 (2015).

    Google Scholar 

  34. Li, W. et al. Fermentation characteristics of Lactococcus lactis subsp. lactis isolated from naturally fermented dairy products and screening of potential starter isolates. Front. Microbiol. 11, 1794 (2020).

    Google Scholar 

  35. Pheng, S., Han, H. L., Park, D.-S., Chung, C. H. & Kim, S.-G. Lactococcus kimchii sp. nov., a new lactic acid bacterium isolated from kimchi. Int. J. Syst. Evolut. Microbiol. 70, 505–510 (2020).

    Google Scholar 

  36. Chen, Y. -s et al. Lactococcus formosensis sp. nov., a lactic acid bacterium isolated from yan-tsai-shin (fermented broccoli stems). Int. J. Syst. Evolut. Microbiol. 64, 146–151 (2014).

    Google Scholar 

  37. Noda, S. et al. Lactococcus insecticola sp. nov. and Lactococcus hodotermopsidis sp. nov., isolated from the gut of the wood-feeding lower termite Hodotermopsis sjostedti. Int. J. Syst. Evolut. Microbiol. 70, 4515–4522 (2020).

    Google Scholar 

  38. Yan Yang, S., Zheng, Y., Huang, Z., Min Wang, X. & Yang, H. Lactococcus nasutitermitis sp. nov. isolated from a termite gut. Int. J. Syst. Evolut. Microbiol. 66, 518–522 (2016).

    Google Scholar 

  39. Williams, A., Fryer, J. & Collins, M. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol. Lett. 68, 109–113 (1990).

    Google Scholar 

  40. Sun, P. et al. Lactococcus intestinalis sp. nov., a new lactic acid bacterium isolated from intestinal contents in Alzheimer’s disease mice. Antonie van. Leeuwenhoek 116, 425–433 (2023).

    Google Scholar 

  41. Luerce, T. D. et al. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog. 6, 1–11 (2014).

    Google Scholar 

  42. Ballal, S. A. et al. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc. Natl. Acad. Sci. 112, 7803–7808 (2015).

    Google Scholar 

  43. Sun, J. et al. F. nucleatum facilitates oral squamous cell carcinoma progression via GLUT1-driven lactate production. EBioMedicine 88 (2023).

  44. Lokesh, K., Kannabiran, J. & Rao, M. D. Salivary lactate dehydrogenase (LDH)-A novel technique in oral cancer detection and diagnosis. J. Clin. Diagn. Res. JCDR 10, ZC34 (2016).

    Google Scholar 

  45. Sun, W. et al. Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma. PLoS One 10, e0125976 (2015).

    Google Scholar 

  46. Hayes, R. B. et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 4, 358–365 (2018).

    Google Scholar 

  47. Wei, K. et al. Potential changes in microorganisms and metabolites associated with oral cancer: a preliminary study. BMC Cancer 25, 611 (2025).

    Google Scholar 

  48. Börnigen, D. et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. Sci. Rep. 7, 17686 (2017).

    Google Scholar 

  49. Lee, W.-H. et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 7, 1–11 (2017).

    Google Scholar 

  50. Zhao, H. et al. Variations in oral microbiota associated with oral cancer. Sci. Rep. 7, 11773 (2017).

    Google Scholar 

  51. Zhang, L., Liu, Y., Zheng, H. J. & Zhang, C. P. The oral microbiota may have influence on oral cancer. Front. Cell. Infect. Microbiol. 9, 476 (2020).

    Google Scholar 

  52. Saxena, R. et al. Assessing the effect of smokeless tobacco consumption on oral microbiome in healthy and oral cancer patients. Front. Cell. Infect. Microbiol. 12, 841465 (2022).

    Google Scholar 

  53. Zheng, D.-W. et al. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nat. Biomed. Eng. 6, 32–43 (2022).

    Google Scholar 

  54. Ohshima, M., Sugahara, K., Kasahara, K. & Katakura, A. Metabolomic analysis of the saliva of Japanese patients with oral squamous cell carcinoma. Oncol. Rep. 37, 2727–2734 (2017).

    Google Scholar 

  55. Reddy, I. et al. Amino acid profile of saliva from patients with oral squamous cell carcinoma using high performance liquid chromatography. J. Oral. Sci. 54, 279–283 (2012).

    Google Scholar 

  56. Cenci, G., Rossi, J., Trotta, F. & Caldini, G. Lactic acid bacteria isolated from dairy products inhibit genotoxic effect of 4-nitroquinoline-1-oxide in SOS-chromotest. Syst. Appl. Microbiol. 25, 483–490 (2002).

    Google Scholar 

  57. Song, L. Y. et al. Exploring synergy between classic mutagens and antibiotics to examine mechanisms of synergy and antibiotic action. Antimicrob. Agents Chemother. 60, 1515–1520 (2016).

    Google Scholar 

  58. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Google Scholar 

  59. Tirelle, P. et al. Comparison of different modes of antibiotic delivery on gut microbiota depletion efficiency and body composition in mouse. BMC Microbiol. 20, 1–10 (2020).

    Google Scholar 

  60. Chalita, M. et al. EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. Int. J. Syst. Evolut. Microbiol. 74, 006421 (2024).

    Google Scholar 

  61. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Google Scholar 

  62. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Google Scholar 

  63. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  64. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  65. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Google Scholar 

  66. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).

    Google Scholar 

  67. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Google Scholar 

  68. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    Google Scholar 

  69. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  70. Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Google Scholar 

  71. Gao, Y. & Wu, M. Accounting for 16S rRNA copy number prediction uncertainty and its implications in bacterial diversity analyses. ISME Commun. 3, 59 (2023).

    Google Scholar 

  72. Vered, M., Allon, I., Buchner, A. & Dayan, D. Stromal myofibroblasts and malignant transformation in a 4NQO rat tongue carcinogenesis model. Oral. Oncol. 43, 999–1006 (2007).

    Google Scholar 

  73. Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (RS-2022-NR067350); the National Research Foundation (NRF) funded by the Korean government (MSIT) (RS-2023-00227274); and a grant from the Mid-Career Researcher Program (RS-2025-00523268). We thank Seung Hyun Han (Seoul National University, Republic of Korea) for kindly providing the MOC2 cell line used in this study. We also thank Yui Taek Lee (Kyung Hee University, Republic of Korea) for helpful comments on the cell experiments.

Author information

Authors and Affiliations

  1. Department of Biology, College of Science, Kyung Hee University, Seoul, Republic of Korea

    Euon Jung Tak, Beom-Jin Goo, Jae-Yun Lee, Jeong Eun Han, Yun-Seok Jeong, Hae-In Joe, Hojun Sung, Hyun Sik Kim & Jin-Woo Bae

Authors
  1. Euon Jung Tak
    View author publications

    Search author on:PubMed Google Scholar

  2. Beom-Jin Goo
    View author publications

    Search author on:PubMed Google Scholar

  3. Jae-Yun Lee
    View author publications

    Search author on:PubMed Google Scholar

  4. Jeong Eun Han
    View author publications

    Search author on:PubMed Google Scholar

  5. Yun-Seok Jeong
    View author publications

    Search author on:PubMed Google Scholar

  6. Hae-In Joe
    View author publications

    Search author on:PubMed Google Scholar

  7. Hojun Sung
    View author publications

    Search author on:PubMed Google Scholar

  8. Hyun Sik Kim
    View author publications

    Search author on:PubMed Google Scholar

  9. Jin-Woo Bae
    View author publications

    Search author on:PubMed Google Scholar

Contributions

E.J.T. and J-W.B. designed the study. E.J.T., B-J.G., J-Y.L., J.E.H., Y-S.J., H-I.J., and H.J.S. carried out the experiments. Data analysis was performed by E.J.T., J-Y.L., and Y-S.J. E.J.T. drafted the manuscript, with H.S.K. and J-W.B. contributing to the revisions. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Jin-Woo Bae.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Data 1

Supplementary Data 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tak, E.J., Goo, BJ., Lee, JY. et al. Dysbiosis of oral and gut microbiomes characterized by elevated Lactococcus in a mouse model of oral squamous cell carcinoma. npj Biofilms Microbiomes (2026). https://doi.org/10.1038/s41522-026-00934-8

Download citation

  • Received: 21 October 2024

  • Accepted: 02 February 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41522-026-00934-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Biofilms and Microbiomes (npj Biofilms Microbiomes)

ISSN 2055-5008 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology