Fig. 1: Multitissue RNA-seq analysis identifies association between gene expression and alternative splicing.
From: Alternative splicing is coupled to gene expression in a subset of variably expressed genes

A RNA-seq samples from 9 tissues with the largest number of samples were analyzed. B For each of 141,043 alternative splicing events with above-threshold variability in the nine tissues, total gene expression and percent-spliced in (ψ) were calculated and logistic regression was performed to test the association of gene expression and ψ. The cartoon at the top shows the regions of the introns surrounding the cassette exon that were investigated bioinformatically. C 3667 UHP (for “upregulated-high ψ”) exons with a statistically significant positive association were identified (ψ increases as total gene expression increases). One example is shown, exon 2 of ABI2. D 3207 DHP (for “downregulated-high ψ”) exons with a statistically significant negative association were identified (ψ decreases as total gene expression increases). In the example, exon 4 of ABLIM2 is shown. E We hypothesized that our observations are related to mechanisms including coupling of RNAP2 extension speed with splicing decisions. In this example, a relatively fast RNAP2 elongation rate exposes a regulatory element (red box) at the 3′ end of intron B (shown in yellow), which promotes skipping of exon B (left); in contract, slower RNAP2 elongation fails to expose this element for a period of time sufficient for the splicing machinery to include exon B. This is one of many mechanisms that link transcription and alternative splicing. The figure was generated using ggpubr and Adobe Illustrator.