Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Materials Degradation
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj materials degradation
  3. articles
  4. article
A 30-year-old diesel tank: fungal-dominated biofilms cause local corrosion of galvanised steel
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

A 30-year-old diesel tank: fungal-dominated biofilms cause local corrosion of galvanised steel

  • Ruben Gerrits1,
  • Biwen An Stepec2,
  • Ralph Bäßler1,
  • Roland Becker1,
  • Matthias Dimper1,
  • Ines Feldmann1,
  • Kira L. Goff3,
  • Jens Günster1,
  • Andrea Hofmann1,
  • René Hesse1,
  • Sarah Kirstein4,
  • Ulrich Klein1,
  • Tatjana Mauch1,
  • Meina Neumann-Schaal4,
  • Ozlem Ozcan1,
  • Nicole M. Taylor3,
  • Julia Schumacher1,5,
  • Yin Shen3,
  • Heike Strehlau1,
  • Matthias Weise1,
  • Jacqueline Wolf4,
  • Andrey Yurkov4,
  • Lisa M. Gieg3 &
  • …
  • Anna A. Gorbushina1,5 

npj Materials Degradation , Article number:  (2026) Cite this article

  • 588 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Environmental sciences
  • Materials science
  • Microbiology

Abstract

The increased use of biodiesel is expected to lead to more microbial corrosion, fouling and fuel degradation issues. In this context, we have analysed the metal, fuel and microbiology of a fouled diesel tank which had been in service for over 30 years. The fuel itself, a B7 biodiesel blend, was not degraded, and—although no free water phase was visible—contained a water content of ~60 ppm. The microbial community was dominated by the fungus Amorphotheca resinae, which formed thick, patchy biofilms on the tank bottom and walls. The tank sheets, composed of galvanised carbon steel, were locally corroded underneath the biofilms, up to a depth of a third of the sheet thickness. On the biofilm-free surfaces, Zn coatings could still be observed. Taken together, A. resinae was shown to thrive in these water-poor conditions, likely enhancing corrosion through the removal of the protective Zn coatings.

Similar content being viewed by others

Impact of diesel and biodiesel contamination on soil microbial community activity and structure

Article Open access 25 May 2021

Evaluation of a novel, multi-functional inhibitor compound for prevention of biofilm formation on carbon steel in marine environments

Article Open access 03 August 2021

The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel

Article Open access 28 April 2022

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information].

References

  1. Söhngen, N. Benzin, petroleum, paraffinöl und paraffin als kohlenstoff-und energiequelle für mikroben. Zentr. Bakteriol. Parasitenk. Abt. II 37, 595–609 (1913).

    Google Scholar 

  2. Bento, F. M. & Gaylarde, C. C. Biodeterioration of stored diesel oil: studies in Brazil. Int. Biodeterior. Biodegrad. 47, 107–112, https://doi.org/10.1016/S0964-8305(00)00112-8 (2001).

    Google Scholar 

  3. Edmonds, P. & Cooney, J. J. Identification of microorganisms isolated from jet fuel systems. Appl. Microbiol. 15, 411–416, https://doi.org/10.1128/am.15.2.411-416.1967 (1967).

    Google Scholar 

  4. Komariah, L. N. et al. Microbial contamination of diesel-biodiesel blends in storage tank; an analysis of colony morphology. Heliyon 8, e09264, https://doi.org/10.1016/j.heliyon.2022.e09264 (2022).

    Google Scholar 

  5. Sørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B. & Nygaard, S. D. Microbial growth studies in biodiesel blends. Bioresour. Technol. 102, 5259–5264, https://doi.org/10.1016/j.biortech.2011.02.017 (2011).

    Google Scholar 

  6. Schleicher, T., Werkmeister, R., Russ, W. & Meyer-Pittroff, R. Microbiological stability of biodiesel–diesel-mixtures. Bioresour. Technol. 100, 724–730, https://doi.org/10.1016/j.biortech.2008.07.029 (2009).

    Google Scholar 

  7. da Fonseca, M. M. B. et al. Unlocking and functional profiling of the bacterial communities in diesel tanks upon additive treatment. Fuel 236, 1311–1320, https://doi.org/10.1016/j.fuel.2018.09.107 (2019).

    Google Scholar 

  8. Marks, C. R. et al. An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships. npj Mater. Degrad. 5, 60, https://doi.org/10.1038/s41529-021-00207-z (2021).

    Google Scholar 

  9. Gaylarde, C. C., Bento, F. M. & Kelley, J. Microbial contamination of stored hydrocarbon fuels and its control. Rev. Microbiol. 30, 01–10, https://doi.org/10.1590/S0001-37141999000100001 (1999).

    Google Scholar 

  10. Zobell, C. E. Action of microorganisms on hydrocarbons. Bacteriol. Rev. 10, 1–49 (1946).

    Google Scholar 

  11. Lansdown, A. R. Microbiological attack in aircraft fuel systems. J. R. Aeronautical Soc. 69, 763–767, https://doi.org/10.1017/S0368393100081694 (1965).

    Google Scholar 

  12. Passman, F. J. Microbial contamination and its control in fuels and fuel systems since 1980 – a review. Int. Biodeterior. Biodegrad. 81, 88–104, https://doi.org/10.1016/j.ibiod.2012.08.002 (2013).

    Google Scholar 

  13. Aktas, D. F. et al. Anaerobic hydrocarbon biodegradation and biocorrosion of carbon steel in marine environments: The impact of different ultra low sulfur diesels and bioaugmentation. Int. Biodeterior. Biodegrad. 118, 45–56, https://doi.org/10.1016/j.ibiod.2016.12.013 (2017).

    Google Scholar 

  14. Bento, F. M., Beech, I. B., Gaylarde, C. C., Englert, G. E. & Muller, I. L. Degradation and corrosive activities of fungi in a diesel–mild steel–aqueous system. World J. Microbiol. Biotechnol. 21, 135–142, https://doi.org/10.1007/s11274-004-3042-2 (2005).

    Google Scholar 

  15. Floyd, J. G., Stamps, B. W., Goodson, W. J. & Stevenson, B. S. Locating and quantifying carbon steel corrosion rates linked to fungal B20 biodiesel degradation. Appl. Environ. Microbiol. 87, e0117721, https://doi.org/10.1128/aem.01177-21 (2021).

  16. Ching, T. H. et al. Biodegradation of biodiesel and microbiologically induced corrosion of 1018 steel by Moniliella wahieum Y12. Int. Biodeterior. Biodegrad. 108, 122–126, https://doi.org/10.1016/j.ibiod.2015.11.027 (2016).

  17. Aslan, C., Aulia, N. I., Devianto, H. & Harimawan, A. Influence of axenic culture of Bacillus clausii and mixed culture on biofilm formation, carbon steel corrosion, and methyl ester degradation in B30 storage tank system. J. Environ. Chem. Eng. 10, 108013, https://doi.org/10.1016/j.jece.2022.108013 (2022).

  18. Xu, D., Gu, T. & Lovley, D. R. Microbially mediated metal corrosion. Nat. Rev. Microbiol. 21, 705–718, https://doi.org/10.1038/s41579-023-00920-3 (2023).

    Google Scholar 

  19. Knisz, J. et al. Microbiologically influenced corrosion—more than just microorganisms. FEMS Microbiol. Rev. 47, fuad041 (2023).

  20. Khan, S. et al. Harnessing bacterial power: advanced strategies and genetic engineering insights for biocorrosion control and inhibition. npj Mater. Degrad. 9, 74, https://doi.org/10.1038/s41529-025-00623-5 (2025).

    Google Scholar 

  21. Luz, G. V. S., Sousa, B. A. S. M., Guedes, A. V., Barreto, C. C. & Brasil, L. M. Biocides used as additives to biodiesels and their risks to the environment and public health: a review. Molecules 23, 2698, https://doi.org/10.3390/molecules23102698 (2018).

    Google Scholar 

  22. Bailey, C. A. & May, M. E. Evaluation of microbiological test kits for hydrocarbon fuel systems. Appl. Environ. Microbiol. 37, 871–877, https://doi.org/10.1128/aem.37.5.871-877.1979 (1979).

    Google Scholar 

  23. Lopes, P. T. C. & Gaylarde, C. Use of immunofluorescence to detect the fungus Hormoconis resinae in aviation kerosine. Int. Biodeterior. Biodegrad. 37, 37–40, https://doi.org/10.1016/0964-8305(95)00110-7 (1996).

  24. Martin-Sanchez, P. M., Gorbushina, A. A., Kunte, H. J. & Toepel, J. A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae. Biofouling 32, 635–644, https://doi.org/10.1080/08927014.2016.1177515 (2016).

  25. Bücker, F. et al. Evaluation of the deteriogenic microbial community using qPCR, n-alkanes and FAMEs biodegradation in diesel, biodiesel and blends (B5, B10, and B50) during storage. Fuel 233, 911–917, https://doi.org/10.1016/j.fuel.2017.11.076 (2018).

    Google Scholar 

  26. Amsellem, D. et al. Perspectives d’évolution des biocarburants: jeux des acteurs et enjeux fonciers. (L’Observatoire de la sécurité des flux et des matières énergétiques, 2021).

  27. He, B. B., Thompson, J. C., Routt, D. W. & Van Gerpen, J. H. Moisture absorption in biodiesel and its petro-diesel blends. Appl. Eng. Agric. 23, 6, https://doi.org/10.13031/2013.22320 (2007).

    Google Scholar 

  28. Dodos, G., Konstantakos, T., Longinos, S. & Zannikos, F. Effects of microbiological contamination in the quality of biodiesel fuels. Glob. NEST J. 14, 175–182, https://doi.org/10.30955/gnj.000856 (2012).

    Google Scholar 

  29. Lee, J. S., Ray, R. I. & Little, B. J. An assessment of alternative diesel fuels: microbiological contamination and corrosion under storage conditions. Biofouling 26, 623–635, https://doi.org/10.1080/08927014.2010.504984 (2010).

    Google Scholar 

  30. Lyles, C. N. et al. Impact of organosulfur content on diesel fuel stability and implications for carbon steel corrosion. Environ. Sci. Technol. 47, 6052–6062, https://doi.org/10.1021/es4006702 (2013).

    Google Scholar 

  31. EPA, U. Investigation Of Corrosion-Influencing Factors In Underground Storage Tanks With Diesel Service. EPA 510-R-16-001. (United States Environmental Protection Agency, 2016).

  32. Houbraken, J., Visagie Cobus, M. & Frisvad Jens, C. Recommendations to prevent taxonomic misidentification of genome-sequenced fungal strains. Microbiol. Resour. Announc. 10, e01074–01020, https://doi.org/10.1128/MRA.01074-20 (2021).

    Google Scholar 

  33. Stamps, B. W. et al. In situ linkage of fungal and bacterial proliferation to microbiologically influenced corrosion in B20 biodiesel storage tanks. Front. Microbiol. 11, 167, https://doi.org/10.3389/fmicb.2020.00167 (2020).

  34. Cofone, L., Walker, J. D. & Cooney, J. J. Utilization of hydrocarbons by Cladosporium resinae. Microbiology 76, 243–246, https://doi.org/10.1099/00221287-76-1-243 (1973).

  35. Lindley, N. D. & Heydeman, M. T. The uptake of n-alkanes from alkane mixtures during growth of the hydrocarbon-utilizing fungus Cladosporium resinae. Appl. Microbiol. Biotechnol. 23, 384–388, https://doi.org/10.1007/BF00257038 (1986).

  36. Krivushina, A. A., Bobyreva, T. V. & Mokeeva, V. L. Growth ability of “kerosene fungus” Amorphotheca resinae strains isolated from different habitats in aviation fuel. Biol. Bull. Rev. 13, S93–S98, https://doi.org/10.1134/S2079086423070095 (2023).

  37. Parbery, D. G. The Kerosene Fungus, Amorphotheca resinae: Its Biology, Taxonomy and Control. (University of Melbourne, 1970).

  38. Krohn, I. et al. Deep (meta)genomics and (meta)transcriptome analyses of fungal and bacteria consortia from aircraft tanks and kerosene identify key genes in fuel and tank corrosion. Front. Microbiol. 12, 722259 (2021).

  39. Walker, J. D. & Cooney, J. J. Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Appl. Microbiol. 26, 705–708, https://doi.org/10.1128/am.26.5.705-708.1973 (1973).

  40. Schirmer, M. et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43, e37–e37, https://doi.org/10.1093/nar/gku1341 (2015).

    Google Scholar 

  41. Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. N. Phytol. 217, 1213–1229, https://doi.org/10.1111/nph.14974 (2018).

    Google Scholar 

  42. Wang, W., Jenkins, P. E. & Ren, Z. Heterogeneous corrosion behaviour of carbon steel in water contaminated biodiesel. Corros. Sci. 53, 845–849, https://doi.org/10.1016/j.corsci.2010.10.020 (2011).

    Google Scholar 

  43. Fang, H. L. & McCormick, R. L. Spectroscopic study of biodiesel degradation pathways. SAE Technical Paper 2006-01-3300 (2006).

  44. Bücker, F. et al. Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. Int. Biodeterior. Biodegrad. 65, 172–178, https://doi.org/10.1016/j.ibiod.2010.09.008 (2011).

    Google Scholar 

  45. Marder, A. R. The metallurgy of zinc-coated steel. Prog. Mater. Sci. 45, 191–271, https://doi.org/10.1016/S0079-6425(98)00006-1 (2000).

    Google Scholar 

  46. Ku, Y.-Y., Tang, T.-W., Lin, K. W. & Chan, S. The impact upon applicability of metal fuel tank using different biodiesel. SAE Int. J. Mater. Manuf. 8, 757–764, https://doi.org/10.4271/2015-01-0521 (2015).

    Google Scholar 

  47. Ackermann, H. et al. Entwicklung einer Prüfmethode zur Bewertung der Materialbeständigkeit von Bauteilen in Mitteldestillatanwendungen. (DGMK, 2020).

  48. Fernandes, D. M. et al. Storage stability and corrosive character of stabilised biodiesel exposed to carbon and galvanised steels. Fuel 107, 609–614, https://doi.org/10.1016/j.fuel.2012.11.010 (2013).

    Google Scholar 

  49. Mackowiak, J. & Short, N. R. Metallurgy of galvanized coatings. Int. Met. Rev. 24, 1–19, https://doi.org/10.1179/imtr.1979.24.1.1 (1979).

    Google Scholar 

  50. Townsend, H. & Hart, R. Composition of chromate passivation films on aluminum-zinc alloy-coated sheet steel. J. Electrochem. Soc. 131, 1345–1348, https://doi.org/10.1149/1.2115817 (1984).

    Google Scholar 

  51. Buzzini, P., Turchetti, B. & Yurkov, A. Extremophilic yeasts: the toughest yeasts around? Yeast 35, 487–497, https://doi.org/10.1002/yea.3314 (2018).

    Google Scholar 

  52. Deveau, A. et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352, https://doi.org/10.1093/femsre/fuy008 (2018).

    Google Scholar 

  53. Alexander, A., Singh, V. K. & Mishra, A. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Front. Microbiol. 11, 568289 (2020).

  54. Belyakova, E. V. et al. The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology 75, 161–171, https://doi.org/10.1134/S0026261706020093 (2006).

  55. Oren, A. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 13, 1908–1923, https://doi.org/10.1111/j.1462-2920.2010.02365.x (2011).

    Google Scholar 

  56. Steinle, L. et al. Life on the edge: active microbial communities in the Kryos MgCl(2)-brine basin at very low water activity. Isme J. 12, 1414–1426, https://doi.org/10.1038/s41396-018-0107-z (2018).

    Google Scholar 

  57. Ryan, R. P. et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7, 514–525, https://doi.org/10.1038/nrmicro2163 (2009).

  58. Shapiro, T. et al. Revealing of non-cultivable bacteria associated with the mycelium of fungi in the kerosene-degrading community isolated from the contaminated jet fuel. J. Fungi 7, 43, https://doi.org/10.3390/jof7010043 (2021).

    Google Scholar 

  59. Gunasekera, T. S., Striebich, R. C., Mueller, S. S., Strobel, E. M. & Ruiz, O. N. Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel. Environ. Sci. Technol. 47, 13449–13458, https://doi.org/10.1021/es403163k (2013).

  60. Martin-Sanchez, P. M., Gorbushina, A. A. & Toepel, J. Quantification of microbial load in diesel storage tanks using culture- and qPCR-based approaches. Int. Biodeterior. Biodegrad. 126, 216–223, https://doi.org/10.1016/j.ibiod.2016.04.009 (2018).

    Google Scholar 

  61. Prenafeta-Boldú, F. X., de Hoog, G. S. & Summerbell, R. C. in Microbial Communities Utilizing Hydrocarbons and Lipids (ed McGenity, T. J.) 307–342 (Springer, 2019).

  62. Hill, E. & Thomas, A. in Proceedings of the Third International Biodegradation Symposium 157–174 (1977).

  63. van Beilen, J. B. & Funhoff, E. G. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 74, 13–21, https://doi.org/10.1007/s00253-006-0748-0 (2007).

    Google Scholar 

  64. Gunde-Cimerman, N., Plemenitaš, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375, https://doi.org/10.1093/femsre/fuy009 (2018).

    Google Scholar 

  65. Hettige, G. E. G. & Sheridan, J. E. Interactions of fungi contaminating diesel fuel. Int. Biodeterior. 25, 299–309, https://doi.org/10.1016/0265-3036(89)90004-3 (1989).

    Google Scholar 

  66. Gerwien, F., Skrahina, V., Kasper, L., Hube, B. & Brunke, S. Metals in fungal virulence. FEMS Microbiol. Rev. 42, fux050 (2017).

  67. Lonergan, Z. R. & Skaar, E. P. Nutrient zinc at the host–pathogen interface. Trends Biochem. Sci. 44, 1041–1056, https://doi.org/10.1016/j.tibs.2019.06.010 (2019).

    Google Scholar 

  68. Robinson, J. R., Isikhuemhen, O. S. & Anike, F. N. Fungal–metal interactions: a review of toxicity and homeostasis. J. Fungi 7, 225, https://doi.org/10.3390/jof7030225 (2021).

    Google Scholar 

  69. McDevitt, C. A. et al. A molecular mechanism for bacterial susceptibility to zinc. PLOS Pathog. 7, e1002357, https://doi.org/10.1371/journal.ppat.1002357 (2011).

    Google Scholar 

  70. Simm, C. et al. Saccharomyces cerevisiae vacuole in zinc storage and intracellular zinc distribution. Eukaryot. Cell 6, 1166–1177, https://doi.org/10.1128/ec.00077-07 (2007).

  71. Cho, M. et al. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans. J. Microbiol. 56, 65–71, https://doi.org/10.1007/s12275-018-7475-y (2018).

  72. Ruytinx, J. et al. Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics 5, 1225–1233, https://doi.org/10.1039/c3mt00061c (2013).

  73. Leonhardt, T., Sácký, J., Šimek, P., Šantrůček, J. & Kotrba, P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics 6, 1693–1701, https://doi.org/10.1039/c4mt00141a (2014).

  74. Kalsotra, T., Khullar, S., Agnihotri, R. & Reddy, M. S. Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance. Microbiology 164, 868–876, https://doi.org/10.1099/mic.0.000666 (2018).

  75. Fomina, M., Charnock, J., Bowen, A. D. & Gadd, G. M. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ. Microbiol. 9, 308–321, https://doi.org/10.1111/j.1462-2920.2006.01139.x (2007).

    Google Scholar 

  76. Kleijburg, F. E. L., Safeer, A. A., Baldus, M. & Wösten, H. A. B. Binding of micro-nutrients to the cell wall of the fungus Schizophyllum commune. Cell Surf. 10, 100108, https://doi.org/10.1016/j.tcsw.2023.100108 (2023).

  77. San-Blas, G., Guanipa, O., Moreno, B., Pekerar, S. & San-Blas, F. Cladosporium carrionii and Hormoconis resinae (C. resinae): Cell wall and melanin studies. Curr. Microbiol. 32, 11–16, https://doi.org/10.1007/s002849900003 (1996).

  78. Fogarty, R. V. & Tobin, J. M. Fungal melanins and their interactions with metals. Enzym. Microb. Technol. 19, 311–317, https://doi.org/10.1016/0141-0229(96)00002-6 (1996).

    Google Scholar 

  79. Gadd, G. M. & Derome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29, 610–617, https://doi.org/10.1007/BF00260993 (1988).

    Google Scholar 

  80. Juzeliūnas, E. et al. Microbially influenced corrosion of zinc and aluminium – two-year subjection to influence of Aspergillus niger. Corros. Sci. 49, 4098–4112, https://doi.org/10.1016/j.corsci.2007.05.004 (2007).

  81. Koblitz, J. et al. MediaDive: the expert-curated cultivation media database. Nucleic Acids Res. 51, D1531–D1538, https://doi.org/10.1093/nar/gkac803 (2022).

    Google Scholar 

  82. Rachel, N. M. & Gieg, L. M. Preserving microbial community integrity in oilfield produced water. Front. Microbiol. 11, 581387 (2020).

  83. Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 4852 (2015).

  84. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583, https://doi.org/10.1038/nmeth.3869 (2016).

    Google Scholar 

  85. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 3, https://doi.org/10.14806/ej.17.1.200 (2011).

    Google Scholar 

  86. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596, https://doi.org/10.1093/nar/gks1219 (2012).

    Google Scholar 

  87. Abarenkov, K. et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res. 52, 791–797, https://doi.org/10.1093/nar/gkad1039 (2023).

    Google Scholar 

  88. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8, e61217, https://doi.org/10.1371/journal.pone.0061217 (2013).

    Google Scholar 

  89. Alibrandi, A., di Primio, R., Bartholomäus, A. & Kallmeyer, J. A modified isooctane-based DNA extraction method from crude oil. mLife 2, 328–338, https://doi.org/10.1002/mlf2.12081 (2023).

    Google Scholar 

  90. Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinform. 21, 257, https://doi.org/10.1186/s12859-020-03585-4 (2020).

    Google Scholar 

  91. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359, https://doi.org/10.1038/nmeth.1923 (2012).

    Google Scholar 

  92. Curry, K. D. et al. Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nat. Methods 19, 845–853, https://doi.org/10.1038/s41592-022-01520-4 (2022).

    Google Scholar 

  93. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421, https://doi.org/10.1186/1471-2105-10-421 (2009).

    Google Scholar 

  94. Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43, https://doi.org/10.1016/S0022-5320(69)90033-1 (1969).

    Google Scholar 

  95. DIN. EN ISO/IEC 17025:2018-03, General requirements for the competence of testing and calibration laboratories. (2018).

Download references

Acknowledgements

This study was supported by internal funds of the B.A.M., with amplicon sequencing supported by NSERC Discovery and Genome Canada grants awarded to L.M.G. We thank Alexander Bartholomäus of GreenGate Genomics for the metagenomic whole genome analysis.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany

    Ruben Gerrits, Ralph Bäßler, Roland Becker, Matthias Dimper, Ines Feldmann, Jens Günster, Andrea Hofmann, René Hesse, Ulrich Klein, Tatjana Mauch, Ozlem Ozcan, Julia Schumacher, Heike Strehlau, Matthias Weise & Anna A. Gorbushina

  2. Norwegian Research Centre, Bergen, Norway

    Biwen An Stepec

  3. University of Calgary, Calgary, Canada

    Kira L. Goff, Nicole M. Taylor, Yin Shen & Lisa M. Gieg

  4. Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

    Sarah Kirstein, Meina Neumann-Schaal, Jacqueline Wolf & Andrey Yurkov

  5. Freie Universität Berlin, Berlin, Germany

    Julia Schumacher & Anna A. Gorbushina

Authors
  1. Ruben Gerrits
    View author publications

    Search author on:PubMed Google Scholar

  2. Biwen An Stepec
    View author publications

    Search author on:PubMed Google Scholar

  3. Ralph Bäßler
    View author publications

    Search author on:PubMed Google Scholar

  4. Roland Becker
    View author publications

    Search author on:PubMed Google Scholar

  5. Matthias Dimper
    View author publications

    Search author on:PubMed Google Scholar

  6. Ines Feldmann
    View author publications

    Search author on:PubMed Google Scholar

  7. Kira L. Goff
    View author publications

    Search author on:PubMed Google Scholar

  8. Jens Günster
    View author publications

    Search author on:PubMed Google Scholar

  9. Andrea Hofmann
    View author publications

    Search author on:PubMed Google Scholar

  10. René Hesse
    View author publications

    Search author on:PubMed Google Scholar

  11. Sarah Kirstein
    View author publications

    Search author on:PubMed Google Scholar

  12. Ulrich Klein
    View author publications

    Search author on:PubMed Google Scholar

  13. Tatjana Mauch
    View author publications

    Search author on:PubMed Google Scholar

  14. Meina Neumann-Schaal
    View author publications

    Search author on:PubMed Google Scholar

  15. Ozlem Ozcan
    View author publications

    Search author on:PubMed Google Scholar

  16. Nicole M. Taylor
    View author publications

    Search author on:PubMed Google Scholar

  17. Julia Schumacher
    View author publications

    Search author on:PubMed Google Scholar

  18. Yin Shen
    View author publications

    Search author on:PubMed Google Scholar

  19. Heike Strehlau
    View author publications

    Search author on:PubMed Google Scholar

  20. Matthias Weise
    View author publications

    Search author on:PubMed Google Scholar

  21. Jacqueline Wolf
    View author publications

    Search author on:PubMed Google Scholar

  22. Andrey Yurkov
    View author publications

    Search author on:PubMed Google Scholar

  23. Lisa M. Gieg
    View author publications

    Search author on:PubMed Google Scholar

  24. Anna A. Gorbushina
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.G.: sampling and sample preparation, data acquisition, curation, visualisation, writing original draft; A.Y.: analysis of fungal SEM images and sequencing data; I.F. conducted ESEM and EDX analyses; M.D., U.K.: technical support, sample preparation; M.N.S., J.W., S.K.,B.A.S.: aseptic sampling, isolation of prokaryotes; Ra.Bä.: corrosion methodology and data analysis; R.H., A.H., M.W., T.M., H.S., Y.S., N.M.T., K.L.G.: sample treatment and data acquisition; Ro.Be.: diesel expertise, data analysis; O.O.: conceptualisation, corrosion analysis; J.G.: detection of the corrosion case, provision of the fuel tank for study; supplying comprehensive information on the tank failure and thevehicle's 30-year operational history; J.S.: analysis of fungal biology and genomes; A.A.G.: conceptualisation; sampling, SEM analysis,funding acquisition; L.M.G.: conceptualisation, sampling, SEM analysis, writing original draft, funding acquisition. Writing – review & editing: all co-authors.

Corresponding authors

Correspondence to Lisa M. Gieg or Anna A. Gorbushina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerrits, R., Stepec, B.A., Bäßler, R. et al. A 30-year-old diesel tank: fungal-dominated biofilms cause local corrosion of galvanised steel. npj Mater Degrad (2026). https://doi.org/10.1038/s41529-025-00731-2

Download citation

  • Received: 16 July 2025

  • Accepted: 27 December 2025

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41529-025-00731-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Biodegradation of Materials 2024

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the partner
  • Q&As with our Editors-in-Chief

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Materials Degradation (npj Mater Degrad)

ISSN 2397-2106 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology