Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Materials Degradation
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj materials degradation
  3. articles
  4. article
Thermal oxidation and high temperature structural behavior of uranium carbide
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 January 2026

Thermal oxidation and high temperature structural behavior of uranium carbide

  • Emma C. Kindall1,
  • Natalie S. Yaw1,
  • Malin C. Dixon Wilkins2,
  • Juejing Liu2,
  • Sam Karcher2,
  • Bryn Merrill1,
  • Rushi Gong3,
  • Shun-Li Shang3,
  • Zi-Kui Liu3,
  • John S. McCloy1,2,
  • Hongwu Xu4,5,
  • Adrien J. Terricabras6,
  • Scarlett Widgeon Paisner6,
  • Arjen van Veelen6,
  • Joshua T. White6 &
  • …
  • Xiaofeng Guo1,2 

npj Materials Degradation , Article number:  (2026) Cite this article

  • 971 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials chemistry
  • Materials for energy and catalysis

Abstract

Uranium monocarbide (UC) exhibits physiochemical characteristics well-suited for nuclear fuel applications in Generation IV reactors, but its high susceptibility to oxidation remains a major barrier to deployment. A detailed understanding of the U-C-O system, including UC thermal oxidation, crystal chemistry, and thermodynamic/kinetic properties, is essential to predict its behavior under normal and off-normal reactor conditions. In this work, in situ high temperature synchrotron X-ray diffraction was conducted under sealed and open-air conditions to characterize UC thermal expansion and oxidation behaviors. From the sealed experiment, the mean coefficient of thermal expansion of UC was determined to be 9.8 × 10−6 K−1 from room temperature to 970 K. Open-air experiments conducted from room temperature to 773 K revealed the oxidation sequence UC → UO2 → U3O8. Notably, a tetragonal U(C1-xOx)2 phase, absent from current thermodynamic predictions, was observed at 840 K, lower than previously considered, suggesting potential relevance for advanced reactor fuel applications. These findings reveal ambiguities in existing knowledge of the U-C-O system, emphasizing the need for continued investigation to facilitate the use of UC-based TRISO and other carbide fuels in emerging reactor designs.

Similar content being viewed by others

Exploring cluster formation in uranium oxidation using high resolution X-ray spectroscopy at elevated temperatures

Article Open access 17 April 2025

Thermal expansion and degradation of uranium mononitride under high-temperature oxidative conditions

Article Open access 12 December 2025

Effect of carbon content on electronic structure of uranium carbides

Article Open access 22 November 2023

Data availability

Data for this article, including 2D diffraction data are available at GitHub, https://github.com/GuoGroupWSU/UC-raw-data.

References

  1. Meyer, M. K., Fielding, R. & Gan, J. Fuel development for gas-cooled fast reactors. J. Nucl. Mater. 371, 281–287 (2007).

    Google Scholar 

  2. Vasudevamurthy, G. & Nelson, A. T. Uranium carbide properties for advanced fuel modeling – A review. J. Nucl. Mater. 558, 153145 (2022).

    Google Scholar 

  3. Szpunar, B. & Szpunar, J. A. Thermal conductivity of uranium nitride and carbide. Int. J. Nucl. Energy 2014, 178360 (2014).

    Google Scholar 

  4. Zhou, W. & Zhou, W. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety – A comprehensive review. Ann. Nucl. Energy 119, 66–86 (2018).

    Google Scholar 

  5. Hosemann, P. et al. Mechanical characteristics of SiC coating layer in TRISO fuel particles. J. Nucl. Mater. 442, 133–142 (2013).

    Google Scholar 

  6. Yun, Y. State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels. Thermal Expansion 179-186 https://inis.iaea.org/records/v6vp8-adm90 (2015).

  7. TRISO-Coated Particle Fuel Phenomenon Identification and Ranking Tables (PIRTs) for Fission Product. NRC Web https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6844/v1/index.html.

  8. Demkowicz, P. A., Liu, B. & Hunn, J. D. Coated particle fuel: Historical perspectives and current progress. J. Nucl. Mater. 515, 434–450 (2019).

    Google Scholar 

  9. Matteo, E. et al. Advanced Reactors Spent Fuel and Waste Streams Disposition Strategies. https://doi.org/10.2172/2335764(2023).

  10. Berthinier, C. et al. Experimental study of uranium carbide pyrophoricity. Powder Technol. 208, 312–317 (2011).

    Google Scholar 

  11. Mendez-Peñalosa, R. Thermal expansion of uranium monocarbide. Atomic Int. https://doi.org/10.2172/4629984 (1963).

    Google Scholar 

  12. Méndez-Peñalosa, R. & Taylor, R. E. Thermal expansion of uranium monocarbide. J. Am. Ceram. Soc. 47, 101–102 (1964).

    Google Scholar 

  13. Richards, H. K. Thermal expansion of uranium and tantalum monocarbides up to 2700°C. Nucl. Technol. https://doi.org/10.13182/NT71-A30947 (1971).

  14. Krikorian, O. H. Thermal expansion of high temperature materials. UCRL--6132, 4137098 http://www.osti.gov/servlets/purl/4137098/, https://doi.org/10.2172/4137098 (1960).

  15. Meerson, G. A., Kotel’nikov, R. B. & Bashlykov, S. N. Uranium monocarbide. Sov. J. Energy 9, 927–931 (1961).

    Google Scholar 

  16. Le Guyadec, F. et al. Thermodynamic and experimental study of UC powders ignition. J. Nucl. Mater. 393, 333–342 (2009).

    Google Scholar 

  17. Gasparrini, C. et al. Oxidation of UC: an in situ high temperature environmental scanning electron microscopy study. J. Nucl. Mater. 494, 127–137 (2017).

    Google Scholar 

  18. Gasparrini, C. et al. Uranium carbide oxidation from 873 K to 1173. K. Corros. Sci. 151, 44–56 (2019).

    Google Scholar 

  19. Dell, R. M., Wheeler, V. J. & McIver, E. J. Oxidation of uranium mononitride and uranium monocarbide. Trans. Faraday Soc. 62, 3591–3606 (1966).

    Google Scholar 

  20. Berthinier, C. et al. Experimental kinetic study of oxidation of uranium monocarbide powders under controlled oxygen partial pressures below 230. C. J. Nucl. Mater. 432, 505–519 (2013).

    Google Scholar 

  21. Goncharov, V. G. et al. Energetics of oxidation and formation of uranium monocarbide. J. Nucl. Mater. 581, 154446 (2023).

    Google Scholar 

  22. Goncharov, V. G. et al. Energetics of oxidation and formation of uranium mononitride. J. Nucl. Mater. 569, 153904 (2022).

    Google Scholar 

  23. Van Tets, A. Reaction of uranium monocarbide powder in oxidizing atmospheres. Thermochim. Acta 6, 195–203 (1973).

    Google Scholar 

  24. Guéneau, C. et al. A thermodynamic approach for advanced fuels of gas-cooled reactors. J. Nucl. Mater. 344, 191–197 (2005).

    Google Scholar 

  25. Chevalier, P. Y. & Fischer, E. Thermodynamic modelling of the C–U and B–U binary systems. J. Nucl. Mater. 288, 100–129 (2001).

    Google Scholar 

  26. Guéneau, C. et al. Thermodynamic modelling of advanced oxide and carbide nuclear fuels: description of the U–Pu–O–C systems. J. Nucl. Mater. 419, 145–167 (2011).

    Google Scholar 

  27. Heiss, A. Etude thermodynamique du systeme U-O-C par mesure des pressions d’oxyde de carbone a l’equilibre. J. Nucl. Mater. 55, 207–223 (1975).

    Google Scholar 

  28. Henry, J. L., Paulson, D. L., Blickensderfer, H. J. & Kelly, H. J. Phase Relations in the Uranium Monocarbide Region of the System Uranium-Carbon-Oxygen at 1,7000 C. (U.S. Department of the Interior, Bureau of Mines, Washington, D.C., 1967).

  29. Stoops, R. F. & Hamme, J. V. Phase relations in the system uranium—Carbon—Oxygen. J. Am. Ceram. Soc. 47, 59–62 (1964).

    Google Scholar 

  30. Reiche, H. M., Vogel, S. C. & Tang, M. In situ synthesis and characterization of uranium carbide using high temperature neutron diffraction. J. Nucl. Mater. 471, 308–316 (2016).

    Google Scholar 

  31. Gronvold, F. High-temperature X-ray study of uranium oxides in the UO2-U3O8 region. J. Inorg. Nucl. Chem. 1, 357–370 (1955).

  32. Leinders, G., Cardinaels, T., Binnemans, K. & Verwerft, M. Accurate lattice parameter measurements of stoichiometric uranium dioxide. J. Nucl. Mater. 459, 135–142 (2015).

    Google Scholar 

  33. Bruneval, F., Freyss, M. & Crocombette, J.-P. Lattice constant in nonstoichiometric uranium dioxide from first principles. Phys. Rev. Mater. 2, 023801 (2018).

    Google Scholar 

  34. De Bona, E. et al. Oxidation of micro- and nanograined UO2 pellets by in situ synchrotron X-ray diffraction. Inorg. Chem. 61, 1843–1850 (2022).

    Google Scholar 

  35. Teixeira, S. R. & Imakuma, K. High temperature X-ray diffraction study of the U4O9 formation on UO2 sintered plates. J. Nucl. Mater. 178, 33–39 (1991).

    Google Scholar 

  36. Crane, J., Kalish, H. S. & Litton, F. B. The development o. uranium carbide as a nuclear fuel. Third Annual Report, September 1, 1961 to October 31, 1962. UNC-5048, 4721743 http://www.osti.gov/servlets/purl/4721743-tY9hb6/, https://doi.org/10.2172/4721743(1963).

  37. Freyss, M. First-principles study of uranium carbide: accommodation of point defects and of helium, xenon, and oxygen impurities. Phys. Rev. B 81, 014101 (2010).

    Google Scholar 

  38. Quémard, L. et al. On the origin of the sigmoid shape in the UO2 oxidation weight gain curves. J. Eur. Ceram. Soc. 29, 2791–2798 (2009).

    Google Scholar 

  39. McEachern, R. J. & Taylor, P. A review of the oxidation of uranium dioxide at temperatures below 400. C. J. Nucl. Mater. 254, 87–121 (1998).

    Google Scholar 

  40. Austin, A. E. Carbon positions in uranium carbides. Acta Crystallogr 12, 159–161 (1959).

    Google Scholar 

  41. Shi, H., Zhang, P., Li, S.-S., Wang, B. & Sun, B. First-principles study of UC2 and U2C3. J. Nucl. Mater. 396, 218–222 (2010).

    Google Scholar 

  42. Belbeoch, B., Piekarski, C. & Perio, P. Structure d’U4O9. https://doi.org/10.3406/bulmi.1960.5408 (1960).

  43. Lauriat, J. P., Chevrier, G. & Boucherle, J. X. Space group of U4O9 in the beta phase. J. Solid State Chem. 80, 80–93 (1989).

    Google Scholar 

  44. Bevan, D. J. M., Grey, I. E. & Willis, B. T. M. The crystal structure of β-U4O9−y. J. Solid State Chem. 61, 1–7 (1986).

    Google Scholar 

  45. Masaki, N. & Doi, K. Analysis of the superstructure of U4O9 by neutron diffraction. Acta Crystallogr. B 28, 785–791 (1972).

    Google Scholar 

  46. Lipson, H. S., Stokes, A. R. & Bragg, W. L. The structure of graphite. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 181, 101–105 (1997).

    Google Scholar 

  47. Wyckoff, R. W. G. Crystal Structures (Interscience Publishers, 1963).

  48. Atoji, M. & Medrud, R. C. Structures of calcium dicarbide and uranium dicarbide by neutron diffraction. J. Chem. Phys. 31, 332–337 (1959).

    Google Scholar 

  49. Nunez, U. et al. Structure of UC2 and U2C3: XRD, 13C NMR and Exafs Study. J. Alloys Compd. 589, 234–239 (2013).

  50. Guéneau, C., Baichi, M., Labroche, D., Chatillon, C. & Sundman, B. Thermodynamic assessment of the uranium–oxygen system. J. Nucl. Mater. 304, 161–175 (2002).

    Google Scholar 

  51. Guéneau, C., Chatain, S. & Dumas. J.S. FUELBASE: a thermodynamic database for advanced nuclear fuels. In Proc. HTR2006 (HTR-2006, 2006).

  52. Farr, J. D., Huber, E. J., Head, E. L. & Holley, C. E. The preparation of uranium monocarbide and its heat of formation. J. Phys. Chem. 63, 1455–1456 (1959).

    Google Scholar 

  53. Huber, E. J., Head, E. L. & Holley, C. E. The heat of formation of uranium dicarbide1,2. J. Phys. Chem. 67, 1730–1731 (1963).

    Google Scholar 

  54. Grenthe, I. et al. Chemical Thermodynamics of Uranium (North-Holland, 1992).

  55. Macleod, A. C. High-temperature thermodynamic properties of uranium dicarbide. J. Inorg. Nucl. Chem. 31, 715–725 (1969).

    Google Scholar 

  56. Leitnaker, J. M. & Godfrey, T. G. Thermodynamic properties of uranium carbides. J. Nucl. Mater. 21, 175–189 (1967).

    Google Scholar 

  57. Levinson, L. S. Heat content of uranium dicarbide from 1484° to 2581°K. J. Chem. Phys. 38, 2105–2106 (1963).

    Google Scholar 

  58. Marcial, J. et al. Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions. Npj Mater. Degrad. 5, 1–14 (2021).

    Google Scholar 

  59. Wen, X.-D., Martin, R. L., Henderson, T. M. & Scuseria, G. E. Density functional theory studies of the electronic structure of solid state actinide oxides. Chem. Rev. 113, 1063–1096 (2013).

    Google Scholar 

  60. Petit, L., Svane, A., Szotek, Z., Temmerman, W. M. & Stocks, G. M. Electronic structure and ionicity of actinide oxides from first principles. Phys. Rev. B 81, 045108 (2010).

    Google Scholar 

  61. Zinkle, S. J. & Was, G. S. Materials challenges in nuclear energy. Acta Mater. 61, 735–758 (2013).

    Google Scholar 

  62. Sengupta, A. K., Agarwal, R. & Kamath, H. S. 3.03 - Carbide Fuel. in Comprehensive Nuclear Materials (ed. Konings, R. J. M.) 55–86 (Elsevier, Oxford). https://doi.org/10.1016/B978-0-08-056033-5.00051-3 (2012).

  63. Stecura, S. & Campbell, W. J. Thermal expansion and phase inversion of rare-earth oxides. BM-RI-5847, 4840970 http://www.osti.gov/servlets/purl/4840970-djI5pv/, https://doi.org/10.2172/4840970 (1960).

  64. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids. https://apps.dtic.mil/sti/citations/ADA129116.

  65. Rahemtulla, A. et al. The high energy diffraction beamline at the Canadian light source. J. Synchrotron Radiat. 32, 750-756 (2025).

  66. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Google Scholar 

  67. Fei, Y. Thermal expansion. in Mineral Physics & Crystallography 29–44. https://doi.org/10.1029/RF002p0029 (American Geophysical Union (AGU), 1995).

  68. Andersson, J.-O. et al. Computational tools for materials science. Calphad 26, 273–312 (2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES) under award No. 31310023M0011. Support of E.C.K. and N.S.Y. is through the support of a Department of Energy, Office of Nuclear Energy, University Nuclear Leadership Program Graduate Fellowship. Research presented in this article was also supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20220053DR. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). Portions of this research were also supported by Alexandra Navrotsky Institute for Experimental Thermodynamics. This research used beamline 28-ID-2 of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Part of the research described in this paper was also performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan.

Author information

Authors and Affiliations

  1. Department of Chemistry, Washington State University, Pullman, WA, USA

    Emma C. Kindall, Natalie S. Yaw, Bryn Merrill, John S. McCloy & Xiaofeng Guo

  2. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA

    Malin C. Dixon Wilkins, Juejing Liu, Sam Karcher, John S. McCloy & Xiaofeng Guo

  3. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA

    Rushi Gong, Shun-Li Shang & Zi-Kui Liu

  4. Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA

    Hongwu Xu

  5. School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, AZ, USA

    Hongwu Xu

  6. Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA

    Adrien J. Terricabras, Scarlett Widgeon Paisner, Arjen van Veelen & Joshua T. White

Authors
  1. Emma C. Kindall
    View author publications

    Search author on:PubMed Google Scholar

  2. Natalie S. Yaw
    View author publications

    Search author on:PubMed Google Scholar

  3. Malin C. Dixon Wilkins
    View author publications

    Search author on:PubMed Google Scholar

  4. Juejing Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Sam Karcher
    View author publications

    Search author on:PubMed Google Scholar

  6. Bryn Merrill
    View author publications

    Search author on:PubMed Google Scholar

  7. Rushi Gong
    View author publications

    Search author on:PubMed Google Scholar

  8. Shun-Li Shang
    View author publications

    Search author on:PubMed Google Scholar

  9. Zi-Kui Liu
    View author publications

    Search author on:PubMed Google Scholar

  10. John S. McCloy
    View author publications

    Search author on:PubMed Google Scholar

  11. Hongwu Xu
    View author publications

    Search author on:PubMed Google Scholar

  12. Adrien J. Terricabras
    View author publications

    Search author on:PubMed Google Scholar

  13. Scarlett Widgeon Paisner
    View author publications

    Search author on:PubMed Google Scholar

  14. Arjen van Veelen
    View author publications

    Search author on:PubMed Google Scholar

  15. Joshua T. White
    View author publications

    Search author on:PubMed Google Scholar

  16. Xiaofeng Guo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Emma C. Kindall (formal analysis, writing—original draft); Natalie S. Yaw (investigation, writing—review and editing); Malin C. Dixon Wilkins (investigation, writing—review and editing); Juejing Liu (investigation, writing—review and editing); Sam Karcher (investigation); Bryn Merrill (investigation); Rushi Gong (investigation, writing—review and editing); Shun-Li Shang (writing—review and editing); Zi-Kui Liu (writing—review and editing); John McCloy (writing—review and editing, supervision); Hongwu Xu (writing—review and editing); Adrien J. Terricabras (investigation, writing—review and editing); Scarlett Widgeon Paisner (writing—review and editing); Arjen van Veelen (writing—review and editing); Joshua T. White (writing—review and editing, supervision); Xiaofeng Guo (conceptualization, methodology, writing—review & editing, funding acquisition, supervision).

Corresponding author

Correspondence to Xiaofeng Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kindall, E.C., Yaw, N.S., Wilkins, M.C.D. et al. Thermal oxidation and high temperature structural behavior of uranium carbide. npj Mater Degrad (2026). https://doi.org/10.1038/s41529-025-00732-1

Download citation

  • Received: 31 May 2025

  • Accepted: 30 December 2025

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s41529-025-00732-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Corrosion and Sustainability

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the partner
  • Q&As with our Editors-in-Chief

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Materials Degradation (npj Mater Degrad)

ISSN 2397-2106 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing