Table 10 A comparison of medical imaging papers

From: Machine learning for Parkinson’s disease: a comprehensive review of datasets, algorithms, and challenges

Article

Main idea

Tools

Applied algorithms

Advantages

Disadvantages

85

PD diagnosis using diffusion MRI and CNN

•SPSS software

•Greedy algorithm

• CNN

• High AUC

• Low scalability

• Not utilizing various scanners

86

ML-based model for PD cognitive impairment diagnostics

• FSL

• Python

• RF

• XGBoost

• LightGBM

• V-SHARP algorithm

• Grid search algorithm

• High accuracy

• Insufficient validation

• Low scalability

87

CNN framework for SNPC segmentation

• MATLAB

• FSL

• SPM

• MRtrix3

• R programming

• Python (Scikit-learn)

• CNN

• High accuracy

• High AUC

• Reduced processing time for large datasets

• High reproducibility

• No external validation

• Not evaluating the effects of medicines on neuromelanin

• No SNPC topography analysis

• Low scalability

88

PD symptoms impact on HRQoL and neural network mapping

• Python

• (Scipy, Python factor_analyzer)

• MATLAB

• FSL

• ART

• Multiple regression

• RF

• A thorough analysis of the various factors affecting HRQoL

• Not analyzing parameters such as accuracy and sensitivity

• Lack of sleep-related questions

• Lack of longitudinal studies about patients

89

DL-based PD diagnosis via MRI and locus coeruleus classification

• Not mentioned

• CNN

• High precision

• Not analyzing parameters such as sensitivity

• Considering the limited amount of data

90

DL-based motor performance prediction in PD

• Python

• CNN

• High-performance prediction

• Low scalability

• Not evaluating metrics such as sensitivity and specificity

91

Deep complex neural networks for classifying IPD

• MedCalc

• R programming

• CNN

• YOLOv3 algorithm

• High diagnostic performance

• High accuracy

• Not investigating other CNNs

• Low scalability

92

Rs-fMRI and topological ML for diagnosing PD

• MATLAB

• Python

• UMAP

• DNN

• SVM

• GB

• High accuracy

• Lack of high-quality data

• Insufficient analysis of scanning device and embedded parameters

• Not evaluating classification performance of different stages of PD

93

DCNN model for dementia diagnosis via FDG-PET

• Python

• DCNN

• GAN

• Adam optimizer

• High accuracy

• High specificity

• High sensitivity

• Not investigating other types of dementia

• Not assessing non-imaging features

94

Interpretable DL model for PD diagnosis

• ANT

• CNN Jacobians

• N3

• SmoothGrad

• High accuracy

• High AUC(ROC)

• High precision

• High sensitivity

• High specificity

• Not investigating other DL architectures

• Lack of utilization of multimodal MRI data

95

3D and 2D CNN to distinguish PD from healthy

• Python

• 2D CNN

• 3D CNN

• High AUC

• High accuracy

• Not applying parallelization to increase performance

96

Detection of PD using parameter-weighted matrices

• MATLAB

• CNN

• High AUC (ROC)

• Not able to detect at early PD stages

• Lack of varied data

• Not verifying the model’s effectiveness externally

97

ML-based PD diagnosis via I-123 FP-CIT scans

• MATLAB

• SVM

• High accuracy

• High sensitivity

• High specificity

• Applying a relatively small number of patients

• Not considering additional parameters

• Limited evaluation of diverse methods

98

[18 F] DOPA PET/CT and CNN for PD classification

• Python

• CNN

• High accuracy

• High specificity

• High sensitivity

• Not performing a regional analysis

• No neuropathologic confirmation

99

DL model for PD/HC separation via FDG-PET

• MATLAB

• Radiomatic DL

• High accuracy

• Lack of general data such as race, and nationality

• Low scalability

• Not involving other kinds of data, such as MRI

84

ML-based PD detection using 123I-ioflupane images

• Not mentioned

• Gradient boosted trees

• LR

• KNN

• High AUC

• Not considering personal information such as gender

• Low scalability

100

DL model for PD detection via facial expression

• Python (PyTorch)

• StarGAN

• CNN

• High accuracy

• Limited database diversity

101

DL approach for diagnosing PD from handwriting

• Not mentioned

• ResNet50

• VGG19

• INCEPTION-V3

• KNN

• High accuracy

• High precision

• Not analyzing F1-score and specificity

102

Automatic PD subtype diagnosis using SVM

• Python (Scikit-learn)

• SVM

• LASSO

• SHAP

• High AUC

• Low scalability

• No analysis of genetic biomarkers

103

DL-based PD classification using MRI data

• Not mentioned

• ResNeXt

• High accuracy

• Lack of clinical validation

104

DL framework for PD classification via MRI

• Python (PyTorch)

• CNN

• Adam optimizer

• High specificity

• High accuracy

• High sensitivity

• High F1-score

• Existence of uncertain details in the model of DL

• Low scalability

• Not evaluating 3D imaging data

105

PD identification via DL on T1-weighted and QSM scans

• Python (PyTorch)

• R programming

• SE-ResNeXt50

• CNN

• High AUC

• High accuracy

• Limited number of centers

• Low scalability

• Reduced performance due to inaccurate segmentation

106

DNN-based PD diagnosis using SPECT images

• Python (Scikit-Learn)

• OpenCV

• PARNet

• High specificity

• High accuracy

• High sensitivity

• High F1-score

• High precession

• Low scalability

• Not examining a large domain of patients

107

PD classification with CNN using DaTSCAN images

• Not mentioned

• MobileNet-V2

• EFFICIENTNET-B0

• High accuracy

• Low scalability

• Potential overfitting issues

108

PD diagnosis with GNNs through MRI scans

• Python (PyTorch)

• GNN

• Sparsity ATopk model

• High F1-score

• Not evaluating multimodal data

83

DCNN-based PD diagnosis using TCS images

• ImageJ software

• Python (PyTorch)

• R programing

• DCNN

• High accuracy

• High PPV

• High F1-score

• High sensitivity

• Low scalability

• Retrospective and single-center nature

• Not evaluating different PD subtypes

109

The impact of CNN design and data leakage on PD diagnosis using MRI

• 3D Slicer

• FSL

• CNN

• N4 algorithm

• High accuracy

• Unequal dataset conditions

• Limited to T1-weighted MRI

• Not using multicenter or multimodal approaches

110

DL-based PD detection using retinal fundus images

• Not mentioned

• LR

• SVM

• Elastic Net

• ResNet50

• Inception-V3

• GoogleNet

• VGG-16

• High NPV

• High sensitivity

• Low scalability

  1. This table includes key concepts (main ideas), the utilized tools, the applied algorithms, advantages, and disadvantages.