Table 2 Stepwise backward selection regression model to predict changes in hypokinetic and hyperkinetic symptoms of PD, ordered by relative importance

From: Digital speech biomarkers can measure acute effects of levodopa in Parkinson’s disease

 

Estimate

p value

HYPOKINETIC FEATURES MODEL (dependent variable: MDS-UPDRS-III (no tremor) change)

INTERCEPT

− 16.84165

<0.001 ***

sdF0 (text) change

−11.80804

<0.001 ***

Int kurt (text) change

7.84045

<0.01 **

RST (text) change

−0.11860

<0.001 ***

LTAS skew (text) change

1.78596

<0.05 *

Int sd (text) change

−4.26142

<0.05 *

NSR (text) change

3.27815

0.0573

LTAS mean (text) change

0.04163

0.1914

VOT (ddk) change

−0.32521

0.1679

Residual std. error: 7.118 (42 df); Multiple R2: 0.60; Adj. R2: 0.52; F-statistic: 7.9; p-value: < 0.001

HYPERKINETIC FEATURES MODEL (dependent variable: Marconi (axial subscore) change)

INTERCEPT

2.479927

<0.001 ***

MPT (text) change

0.189965

<0.05 *

Int sd (text) change

0.685253

0.0662

Int sd (phon) change

-0.627082

0.0702

LTAS sd (text) change

0.007723

<0.05 *

LTAS skew (text) change

0.992226

<0.05 *

LTAS kurt (text) change

-0.009829

0.1262

Residual std. error: 2.078 (44 df); Multiple R2: 0.37; Adj. R2: 0.29; F-statistic: 4.3; p-value: < 0.01

  1. VOT Voice to onset time, NSR Net speech rate, RST Rate of speech timing, Int sd standard deviation of intensity, Int kurt Kurtosis of intensity, sdF0 Standard deviation of fundamental frequency, MPT Maximal phonation time, LTAS Long-term averaged spectrum, sd Standard deviation, kurt Kurtosis, skew Skewness.
  2. p-value significance—*p < 0.05, **p < 0.01, ***p < 0.001.