Table 3 Stepwise backward selection regression model to predict medication state transitions, ordered by relative importance
From: Digital speech biomarkers can measure acute effects of levodopa in Parkinson’s disease
Estimate | p value | |
|---|---|---|
Medication change Model (dependent variable: Change OFF to ON or ON to OFF) | ||
INTERCEPT | −0.34041 | 0.51172 |
LTAS mean (text) change | 0.04163 | <0.01 ** |
MPT (phon) change | 0.66034 | <0.01 ** |
Int kurt (text) change | −3.39710 | <0.05 * |
RST (text) change | −0.02887 | 0.05147 |
LTAS skew (text) change | 0.54767 | 0.14261 |
sdF0 (text) change | 2.54548 | 0.14421 |
NSR (text) change | 1.48410 | 0.2086 |
Null deviance: 70.681 (50 df); Residual deviance: 29.23; AIC: 45.23 | ||