Table 9 Performance of machine learning classifiers for predicting MMSE ≥ 27 using the seven-acid signature
Variables | AUC (95% CI) | Sensitivity | Specificity |
|---|---|---|---|
RBF SVM | 0.696 (0.584–0.808) | 0.786 | 0.596 |
linear SVM | 0.715 (0.605–0.826) | 0.667 | 0.787 |
RF | 0.777 (0.680–0.875) | 0.857 | 0.638 |
XGBoost | 0.729 (0.624–0.834) | 0.857 | 0.532 |
MLP | 0.700 (0.589–0.811) | 0.714 | 0.681 |