Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Parkinson's Disease
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj parkinson's disease
  3. review
  4. article
Parkinson’s disease: spatiotemporal regulation and therapeutic prospects of TREM2-mediated microglial responses
Download PDF
Download PDF
  • Review
  • Open access
  • Published: 13 January 2026

Parkinson’s disease: spatiotemporal regulation and therapeutic prospects of TREM2-mediated microglial responses

  • Keyuan Hou1 na1,
  • Zhaowu An1 na1,
  • Yuxiang Xu1 na1,
  • Jing Wang1,
  • Meiru Zhou1,
  • Ye Liu1,
  • Xianfeng Zhu1,2 &
  • …
  • Jianshe Wei1 

npj Parkinson's Disease , Article number:  (2026) Cite this article

  • 1350 Accesses

  • 22 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Immunology
  • Neurology
  • Neuroscience

Abstract

Parkinson’s disease (PD) presents a challenge, with neuroinflammation and immune dysregulation central to its pathogenesis. This review examines TREM2—a microglial receptor governing phagocytosis, metabolic adaptation, and immune phenotypes—as an important orchestrator of innate immunity across PD, with roles that appear stage- and context-dependent. We synthesize structure, signaling, and heterogeneity; integrate single-cell multi-omics, animal models, and clinical data; outline conserved mechanisms; and consider translational implications as an investigational biomarker and therapeutic target, emphasizing spatiotemporal dynamics.

Similar content being viewed by others

Inflammation and immune dysfunction in Parkinson disease

Article 04 March 2022

Microglia depletion reduces neurodegeneration and remodels extracellular matrix in a mouse Parkinson’s disease model triggered by α-synuclein overexpression

Article Open access 09 January 2025

Microglial low-affinity FcγR mediates the phagocytic elimination of dopaminergic neurons in Parkinson’s disease degeneration

Article Open access 16 January 2026

Data availability

No data was used for the research described in the article.

References

  1. Ascherio, A. & Schwarzschild, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272 (2016).

    Google Scholar 

  2. Grotewold, N. & Albin, R. L. Update: descriptive epidemiology of Parkinson disease. Parkinsonism Relat. Disord. 120, 106000 (2024).

    Google Scholar 

  3. Lotharius, J. & Brundin, P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3, 932–942 (2002).

    Google Scholar 

  4. Guan, L., Lin, L., Ma, C. & Qiu, L. Decoding crosstalk between neurotransmitters and α-synuclein in Parkinson’s disease: pathogenesis and therapeutic implications. Ther. Adv. Neurol. Disord. 18, 17562864251339895 (2025).

    Google Scholar 

  5. Yang, Y. et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 610, 791–795 (2022).

    Google Scholar 

  6. Schaffner, A. et al. Vitamin B(12) modulates Parkinson’s disease LRRK2 kinase activity through allosteric regulation and confers neuroprotection. Cell Res. 29, 313–329 (2019).

    Google Scholar 

  7. Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    Google Scholar 

  8. Bloem, B. R., Okun, M. S. & Klein, C. Parkinson’s disease. Lancet 397, 2284–2303 (2021).

    Google Scholar 

  9. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    Google Scholar 

  10. Noyce, A. J. et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol. 72, 893–901 (2012).

    Google Scholar 

  11. Tansey, M. G. et al. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657–673 (2022).

    Google Scholar 

  12. Araújo, B. et al. Neuroinflammation and Parkinson’s disease-from neurodegeneration to therapeutic opportunities. Cells 11, https://doi.org/10.3390/cells11182908 (2022).

  13. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    Google Scholar 

  14. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Google Scholar 

  15. Spivey, A. Rotenone and paraquat linked to Parkinson’s disease: human exposure study supports years of animal studies. Environ. Health Perspect. 119, A259 (2011).

    Google Scholar 

  16. Langston, J. W. & Ballard, P. A. Jr Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N. Engl. J. Med. 309, 310 (1983).

    Google Scholar 

  17. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 e1412 (2016).

    Google Scholar 

  18. Zhang, X., Tang, B. & Guo, J. Parkinson’s disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl. Neurodegener. 12, 59 (2023).

    Google Scholar 

  19. Lee, K. S. et al. Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc. Natl. Acad. Sci. USA 115, E8844–E8853 (2018).

    Google Scholar 

  20. Nguyen, M., Wong, Y. C., Ysselstein, D., Severino, A. & Krainc, D. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 42, 140–149 (2019).

    Google Scholar 

  21. Bernier, L. P. et al. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun. 11, 1559 (2020).

    Google Scholar 

  22. Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving concepts. Cell 179, 292–311 (2019).

    Google Scholar 

  23. Guo, M. et al. Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain 143, 1476–1497 (2020).

    Google Scholar 

  24. Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).

    Google Scholar 

  25. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Google Scholar 

  26. Armstrong, M. J. & Okun, M. S. Diagnosis and treatment of Parkinson disease: a review. JAMA 323, 548–560 (2020).

    Google Scholar 

  27. Xiong, M. et al. Microglia process α-synuclein fibrils and enhance their pathogenicity in a TREM2-dependent manner. Adv. Sci. 12, e2413451 (2025).

    Google Scholar 

  28. Zhu, B. et al. TREM2 deficiency exacerbates cognitive impairment by aggravating α-Synuclein-induced lysosomal dysfunction in Parkinson’s disease. Cell Death Discov. 11, 243 (2025).

    Google Scholar 

  29. Huang, P. et al. TREM2 deficiency aggravates NLRP3 inflammasome activation and pyroptosis in MPTP-induced parkinson’s disease Mice and LPS-induced BV2 cells. Mol. Neurobiol. 61, 2590–2605 (2024).

    Google Scholar 

  30. Painter, M. M. et al. TREM2 in CNS homeostasis and neurodegenerative disease. Mol. Neurodegener. 10, 43 (2015).

    Google Scholar 

  31. Deczkowska, A. et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173, 1073–1081 (2018).

    Google Scholar 

  32. Zhong, J. et al. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell 42, 968–984 e969 (2024).

    Google Scholar 

  33. Bouchon, A., Hernández-Munain, C., Cella, M. & Colonna, M. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194, 1111–1122 (2001).

    Google Scholar 

  34. Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453 (2003).

    Google Scholar 

  35. Ma, L. et al. Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer’s disease brains. Mol. Neurodegener. 11, 72 (2016).

    Google Scholar 

  36. Lill, C. M. et al. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement 11, 1407–1416 (2015).

    Google Scholar 

  37. Stefansson, H. et al. Homozygosity for R47H in TREM2 and the risk of Alzheimer’s disease. N. Engl. J. Med. 390, 2217–2219 (2024).

    Google Scholar 

  38. Dean, H. B. et al. Multimerization of TREM2 is impaired by Alzheimer’s disease-associated variants. Alzheimers Dement. 20, 6332–6350 (2024).

    Google Scholar 

  39. Mengel, D. et al. TREM2 rare variant p.R47H is not associated with Parkinson’s disease. Parkinsonism Relat. Disord. 23, 109–111 (2016).

    Google Scholar 

  40. Nudelman, K. N. H., Brumm, M. C., Marek, K. & Foroud, T. M. for the Parkinson's Progression Markers Initiative (PPMI) Study. TREM2 variants in Parkinson’s disease: results from the Parkinson’s progression markers initiative (PPMI) study. Alzheimer Dement. 18, e062316 (2022).

  41. Rayaprolu, S. et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol. Neurodegener. 8, 19 (2013).

    Google Scholar 

  42. Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6, 243ra286 (2014).

    Google Scholar 

  43. Guo, Y. et al. TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson’s disease models. FASEB J. 33, 12164–12174 (2019).

    Google Scholar 

  44. Cohen, J. TREM-1 in sepsis. Lancet 358, 776–778 (2001).

    Google Scholar 

  45. Wang, H. et al. Phenotypic plasticity and increased infiltration of peripheral blood-derived TREM1(+) mono-macrophages following radiotherapy in rectal cancer. Cell Rep. Med. 6, 101887 (2025).

    Google Scholar 

  46. Ajith, A. et al. Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti-PD-1 resistance. J. Clin. Investig. 133, https://doi.org/10.1172/JCI167951 (2023).

  47. Bouchon, A., Facchetti, F., Weigand, M. A. & Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 1103–1107 (2001).

    Google Scholar 

  48. Wilson, E. N. et al. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat. Neurosci. 27, 873–885 (2024).

    Google Scholar 

  49. Peng, Q. et al. TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci. Signal. 3, ra38 (2010).

    Google Scholar 

  50. Wang, S. et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. Cell 185, 4153–4169 e4119 (2022).

    Google Scholar 

  51. Haure-Mirande, J. V., Audrain, M., Ehrlich, M. E. & Gandy, S. Microglial TYROBP/DAP12 in Alzheimer’s disease: transduction of physiological and pathological signals across TREM2. Mol. Neurodegener. 17, 55 (2022).

    Google Scholar 

  52. Colonna, M. The biology of TREM receptors. Nat. Rev. Immunol. 23, 580–594 (2023).

    Google Scholar 

  53. Zhao, P. et al. LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Mol. Neurodegener. 17, 44 (2022).

    Google Scholar 

  54. Sheng, X. et al. Identification of the minimal active soluble TREM2 sequence for modulating microglial phenotypes and amyloid pathology. J. Neuroinflammation 18, 286 (2021).

    Google Scholar 

  55. Wunderlich, P. et al. Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and γ-secretase-dependent intramembranous cleavage. J. Biol. Chem. 288, 33027–33036 (2013).

    Google Scholar 

  56. Glebov, K., Wunderlich, P., Karaca, I. & Walter, J. Functional involvement of γ-secretase in signaling of the triggering receptor expressed on myeloid cells-2 (TREM2). J. Neuroinflammation 13, 17 (2016).

    Google Scholar 

  57. Belsare, K. D. et al. Soluble TREM2 inhibits secondary nucleation of Aβ fibrillization and enhances cellular uptake of fibrillar Aβ. Proc. Natl. Acad. Sci. USA 119, e2114486119 (2022).

  58. Wilson, E. N. et al. Soluble TREM2 is elevated in Parkinson’s disease subgroups with increased CSF tau. Brain 143, 932–943 (2020).

    Google Scholar 

  59. Zhong, L., Xu, Y., Zhuo, R. & Wang, T. Soluble TREM2 ameliorates tau phosphorylation and cognitive deficits through activating transgelin-2 in Alzheimer’s disease. Nat. Commun. 14, 2923 (2019).

    Google Scholar 

  60. Zhang, X. et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat. Commun. 14, 6670 (2023).

    Google Scholar 

  61. Dong, M. H. et al. CSF sTREM2 in neurological diseases: a two-sample Mendelian randomization study. J. Neuroinflammation 19, 79 (2022).

    Google Scholar 

  62. Qiao, W. et al. Trem2 H157Y increases soluble TREM2 production and reduces amyloid pathology. Mol. Neurodegener. 18, 8 (2023).

    Google Scholar 

  63. Thornton, P. et al. TREM2 shedding by cleavage at the H157-S158 bond is accelerated for the Alzheimer’s disease-associated H157Y variant. EMBO Mol. Med 9, 1366–1378 (2017).

    Google Scholar 

  64. Dhandapani, R. et al. Sustained Trem2 stabilization accelerates microglia heterogeneity and Aβ pathology in a mouse model of Alzheimer’s disease. Cell Rep. 39, 110883 (2022).

    Google Scholar 

  65. Qin, Q. et al. The association of CSF sTREM2 with cognitive decline and its dynamic change in Parkinson’s disease: analysis of the PPMI cohort. Front Aging Neurosci. 14, 892493 (2022).

    Google Scholar 

  66. Peng, G. et al. Analysis of cerebrospinal fluid soluble TREM2 and polymorphisms in sporadic Parkinson’s disease in a Chinese population. J. Mol. Neurosci. 70, 294–301 (2020).

    Google Scholar 

  67. Zhou, Y. et al. Human early-onset dementia caused by DAP12 deficiency reveals a unique signature of dysregulated microglia. Nat. Immunol. 24, 545–557 (2023).

    Google Scholar 

  68. Deczkowska, A., Weiner, A. & Amit, I. The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway. Cell 181, 1207–1217 (2020).

    Google Scholar 

  69. Klesney-Tait, J., Turnbull, I. R. & Colonna, M. The TREM receptor family and signal integration. Nat. Immunol. 7, 1266–1273 (2006).

    Google Scholar 

  70. Shi, Q., Chang, C., Saliba, A. & Bhat, M. A. Microglial mTOR activation upregulates trem2 and enhances β-amyloid plaque clearance in the 5XFAD Alzheimer’s disease model. J. Neurosci. 42, 5294–5313 (2022).

    Google Scholar 

  71. van Olst, L. et al. Microglial mechanisms drive amyloid-β clearance in immunized patients with Alzheimer’s disease. Nat. Med. 31, 1604–1616 (2025).

    Google Scholar 

  72. Hou, J., Chen, Y., Grajales-Reyes, G. & Colonna, M. TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol. Neurodegener. 17, 84 (2022).

    Google Scholar 

  73. Shi, Y. & Holtzman, D. M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18, 759–772 (2018).

    Google Scholar 

  74. Fourgeaud, L. et al. TAM receptors regulate multiple features of microglial physiology. Nature 532, 240–244 (2016).

    Google Scholar 

  75. Matera, A. et al. Microglial lipid phosphatase SHIP1 limits complement-mediated synaptic pruning in the healthy developing hippocampus. Immunity 58, 197–217 e113 (2025).

    Google Scholar 

  76. Griciuc, A. et al. TREM2 Acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron 103, 820–835 e827 (2019).

    Google Scholar 

  77. Carling, G. K. et al. Alzheimer’s disease-linked risk alleles elevate microglial cGAS-associated senescence and neurodegeneration in a tauopathy model. Neuron 112, 3877–3896 e3878 (2024).

    Google Scholar 

  78. Sayed, F. A. et al. AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation. Sci. Transl. Med. 13, eabe3947 (2021).

    Google Scholar 

  79. Yeku, O. O. et al. Myeloid targeting antibodies PY159 and PY314 for platinum-resistant ovarian cancer. J. Immunother. Cancer 13, https://doi.org/10.1136/jitc-2024-010959 (2025).

  80. Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900 e817 (2020).

    Google Scholar 

  81. Weng, Y. et al. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biol. 40, 101849 (2021).

    Google Scholar 

  82. Paloneva, J. et al. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J. Exp. Med. 198, 669–675 (2003).

    Google Scholar 

  83. Ren, M. et al. TREM2 overexpression attenuates neuroinflammation and protects dopaminergic neurons in experimental models of Parkinson’s disease. Exp. Neurol. 302, 205–213 (2018).

    Google Scholar 

  84. Huang, W. et al. Triggering receptor expressed on myeloid cells 2 protects dopaminergic neurons by promoting autophagy in the inflammatory pathogenesis of Parkinson’s disease. Front. Neurosci. 15, 745815 (2021).

    Google Scholar 

  85. Stoll, A. C. et al. Alpha-synuclein inclusion responsive microglia are resistant to CSF1R inhibition. J. Neuroinflammation 21, 108 (2024).

    Google Scholar 

  86. Kinugawa, K. et al. DAP12 and CD11b contribute to the microglial-induced death of dopaminergic neurons in vitro but not in vivo in the MPTP mouse model of Parkinson’s disease. J. Neuroinflammation 10, 82 (2013).

    Google Scholar 

  87. Zhao, P. et al. A tetravalent TREM2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer’s disease. Sci. Transl. Med. 14, eabq0095 (2022).

    Google Scholar 

  88. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Google Scholar 

  89. Kober, D. L. & Brett, T. J. TREM2-ligand interactions in health and disease. J. Mol. Biol. 429, 1607–1629 (2017).

    Google Scholar 

  90. Lin, D. et al. Transcriptome and proteome profiling reveals TREM2-dependent and -independent glial response and metabolic perturbation in an Alzheimer’s mouse model. J. Biol. Chem. 300, 107874 (2024).

    Google Scholar 

  91. Xie, M. et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat. Neurosci. 25, 26–38 (2022).

    Google Scholar 

  92. Mills, W. A. 3rd & Eyo, U. B. TREMble before TREM2: the mighty microglial receptor conferring neuroprotective properties in TDP-43 mediated neurodegeneration. Neurosci. Bull. 39, 163–166 (2023).

    Google Scholar 

  93. Xue, T. et al. Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury. Acta Pharm. Sin. B 12, 1885–1898 (2022).

    Google Scholar 

  94. Tagliatti, E. et al. Trem2 expression in microglia is required to maintain normal neuronal bioenergetics during development. Immunity 57, 86–105 e109 (2024).

    Google Scholar 

  95. Filipello, F. et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48, 979–991 e978 (2018).

    Google Scholar 

  96. Li, L. et al. Dehydroervatamine as a promising novel TREM2 agonist, attenuates neuroinflammation. Neurotherapeutics 22, e00479 (2025).

    Google Scholar 

  97. Parhizkar, S. et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat. Neurosci. 22, 191–204 (2019).

    Google Scholar 

  98. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 e569 (2017).

    Google Scholar 

  99. Yang, Y. et al. Accumulated BCAAs and BCKAs contribute to the HFD-induced deterioration of Alzheimer’s disease via a dysfunctional TREM2-related reduction in microglial β-amyloid clearance. J. Neuroinflammation 21, 327 (2024).

    Google Scholar 

  100. Zhang, Y. et al. TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem. Biophys. Res. Commun. 499, 797–802 (2018).

    Google Scholar 

  101. Butovsky, O. & Weiner, H. L. Microglial signatures and their role in health and disease. Nat. Rev. Neurosci. 19, 622–635 (2018).

    Google Scholar 

  102. Liu, W. et al. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Hum. Mol. Genet. 29, 3224–3248 (2020).

    Google Scholar 

  103. Li, X. X. & Zhang, F. Targeting TREM2 for Parkinson’s disease: where to go? Front. Immunol. 12, 795036 (2021).

    Google Scholar 

  104. Li, L. et al. A natural small molecule aspidosperma-type alkaloid, hecubine, as a new TREM2 activator for alleviating lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Redox Biol. 70, 103057 (2024).

    Google Scholar 

  105. Yan, J. et al. TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. J. Neuroinflammation 19, 289 (2022).

    Google Scholar 

  106. Yang, R. et al. Dihydroquercetin alleviates dopamine neuron loss via regulating TREM2 activation. Int. J. Biol. Macromol. 269, 132179 (2024).

    Google Scholar 

  107. Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25, 588–595 (2022).

    Google Scholar 

  108. Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837–854 e839 (2020).

    Google Scholar 

  109. Yang, S. et al. TREM2-IGF1 mediated glucometabolic enhancement underlies microglial neuroprotective properties during ischemic stroke. Adv. Sci. 11, e2305614 (2024).

    Google Scholar 

  110. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    Google Scholar 

  111. Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170, 649–663 e613 (2017).

    Google Scholar 

  112. Claes, C. et al. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer’s disease. Mol. Neurodegener. 16, 50 (2021).

    Google Scholar 

  113. Filipello, F. et al. Defects in lysosomal function and lipid metabolism in human microglia harboring a TREM2 loss of function mutation. Acta Neuropathol. 145, 749–772 (2023).

    Google Scholar 

  114. Wei, W. et al. TREM2 regulates microglial lipid droplet formation and represses post-ischemic brain injury. Biomed. Pharmacother. 170, 115962 (2024).

    Google Scholar 

  115. Hong, S. & Stevens, B. TREM2: keeping microglia fit during good times and bad. Cell Metab. 26, 590–591 (2017).

    Google Scholar 

  116. Marc Suárez-Calvet, M. et al. Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol. Neurodegener. 14, 1 (2019).

    Google Scholar 

  117. Zhang, X. et al. Soluble TREM2 ameliorates tau phosphorylation and cognitive deficits through activating transgelin-2 in Alzheimer’s disease. Nat. Commun. 14, 6670 (2023).

    Google Scholar 

  118. Cady, J. et al. TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 71, 449–453 (2014).

    Google Scholar 

  119. Jericó, I. et al. Profiling TREM2 expression in amyotrophic lateral sclerosis. Brain Behav. Immun. 109, 117–126 (2023).

    Google Scholar 

  120. Jiao, L. et al. sTREM2 cerebrospinal fluid levels are a potential biomarker in amyotrophic lateral sclerosis and associate with UMN burden. Front. Neurol. 15, 1515252 (2024).

    Google Scholar 

  121. Goralski, T. M. et al. Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nat. Commun. 15, 2642 (2024).

    Google Scholar 

  122. Choi, I. et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 11, 1386 (2020).

    Google Scholar 

  123. Liang, H. et al. TREM2 gene induces differentiation of induced pluripotent stem cells into dopaminergic neurons and promotes neuronal repair via TGF-β activation in 6-OHDA-lesioned mouse model of Parkinson’s disease. CNS Neurosci. Ther. 30, e14630 (2024).

    Google Scholar 

  124. Wang, H., Ma, J., Li, X., Peng, Y. & Wang, M. FDA compound library screening Baicalin upregulates TREM2 for the treatment of cerebral ischemia-reperfusion injury. Eur. J. Pharm. 969, 176427 (2024).

    Google Scholar 

  125. Zhang, X. et al. Triggering receptor expressed on myeloid cells 2 overexpression inhibits proinflammatory cytokines in lipopolysaccharide-stimulated microglia. Mediat. Inflamm. 2017, 9340610 (2017).

    Google Scholar 

  126. Chen, S. et al. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J. Neuroinflammation 17, 168 (2020).

  127. Zhang, J. et al. TREM-2-p38 MAPK signaling regulates neuroinflammation during chronic cerebral hypoperfusion combined with diabetes mellitus. J. Neuroinflammation 17, 2 (2020).

  128. Wang, Y. et al. TREM2-dependent microglial function is essential for remyelination and subsequent neuroprotection. Glia 71, 1247–1258 (2023).

    Google Scholar 

  129. Zhang, X. et al. Effects of soluble TREM2 on motor progression in Parkinson’s disease. Neurosci. Lett. 807, 137277 (2023).

    Google Scholar 

  130. Kulkarni, B., Kumar, D., Cruz-Martins, N. & Sellamuthu, S. Role of TREM2 in Alzheimer’s disease: a long road ahead. Mol. Neurobiol. 58, 5239–5252 (2021).

    Google Scholar 

  131. Rachmian, N. et al. Identification of senescent, TREM2-expressing microglia in aging and Alzheimer’s disease model mouse brain. Nat. Neurosci. 27, 1116–1124 (2024).

    Google Scholar 

  132. Gao, C., Jiang, J., Tan, Y. & Chen, S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal. Transduct. Target Ther. 8, 359 (2023).

    Google Scholar 

  133. Ye, M. et al. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson’s disease alpha-synuclein transgenic mice. Exp. Mol. Med. 48, e244 (2016).

    Google Scholar 

  134. Cheng, J. et al. Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy 16, 2193–2205 (2020).

    Google Scholar 

  135. Yin, S. et al. TREM2 signaling in Parkinson’s disease: regulation of microglial function and α-synuclein pathology. Int. Immunopharmacol. 143, 113446 (2024).

    Google Scholar 

  136. Feng, X., Wu, C. Y., Burton, F. H., Loh, H. H. & Wei, L. N. β-arrestin protects neurons by mediating endogenous opioid arrest of inflammatory microglia. Cell Death Differ. 21, 397–406 (2014).

    Google Scholar 

  137. Samant, R. R., Standaert, D. G. & Harms, A. S. The emerging role of disease-associated microglia in Parkinson’s disease. Front. Cell. Neurosci. 18, 1476461 (2024).

    Google Scholar 

  138. Gao, H. et al. Distinct myeloid population phenotypes dependent on TREM2 expression levels shape the pathology of traumatic versus demyelinating CNS disorders. Cell Rep. 42, 112629 (2023).

    Google Scholar 

  139. Zhao, N. et al. Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia. J. Exp. Med. 219, https://doi.org/10.1084/jem.20212479 (2022).

  140. Alonge, P. et al. TREM 2 in Parkinson’s disease: a promising candidate gene for disease susceptibility and progression. Brain Sci. 15, https://doi.org/10.3390/brainsci15040379 (2025).

  141. Guvenek, A. et al. Transcriptional profiling in microglia across physiological and pathological states identifies a transcriptional module associated with neurodegeneration. Commun. Biol. 7, 1168 (2024).

    Google Scholar 

  142. Jay, T. R., von Saucken, V. E. & Landreth, G. E. TREM2 in neurodegenerative diseases. Mol. Neurodegener. 12, 56 (2017).

    Google Scholar 

  143. Liu, G. et al. Convergent genetic and expression datasets highlight TREM2 in Parkinson’s disease susceptibility. Mol. Neurobiol. 53, 4931–4938 (2016).

    Google Scholar 

  144. Zhou, S. L. et al. TREM2 variants and neurodegenerative diseases: a systematic review and meta-analysis. J. Alzheimers Dis. 68, 1171–1184 (2019).

    Google Scholar 

  145. Tan, T. et al. Genetic analysis of TREM2 variants in Chinese Han patients with sporadic Parkinson’s disease. Neurosci. Lett. 612, 189–192 (2016).

    Google Scholar 

  146. Dardiotis, E. et al. Assessment of TREM2 rs75932628 variant’s association with Parkinson’s disease in a Greek population and Meta-analysis of current data. Int. J. Neurosci. 131, 544–548 (2021).

    Google Scholar 

  147. Li, L. et al. TREM2 in neurodegenerative diseases: mechanisms and therapeutic potential. Cells 14, https://doi.org/10.3390/cells14171387 (2025).

  148. You, Y. F. et al. TREM2 deficiency inhibits microglial activation and aggravates demyelinating injury in neuromyelitis optica spectrum disorder. J. Neuroinflammation 20, 89 (2023).

    Google Scholar 

  149. Shi, J. et al. TREM2 regulates BV2 microglia activation and influences corticosterone-induced neuroinflammation in depressive disorders. Brain Res. 1822, 148664 (2024).

    Google Scholar 

  150. Xu, M. et al. Effects of alpinae oxyphyllae fructus on microglial polarization in a LPS-induced BV2 cells model of neuroinflammation via TREM2. J. Ethnopharmacol. 302, 115914 (2023).

    Google Scholar 

  151. Li, X. et al. MHC-I in the hippocampus promotes comorbid depressive symptoms in bone cancer pain via the upregulation of microglial TREM2/DAP12 signaling. Behav. Brain Res. 461, 114843 (2024).

    Google Scholar 

  152. Bandow, K., Smith, A. & Garlick, J. Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) positively regulates lipopolysaccharide-induced expression of CXC chemokine ligand 10 and 11 in mouse macrophages. Biochem. Biophys. Res. Commun. 635, 227–235 (2022).

    Google Scholar 

  153. Mazaheri, F. et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep. 18, 1186–1198 (2017).

    Google Scholar 

  154. Linnartz-Gerlach, B. et al. TREM2 triggers microglial density and age-related neuronal loss. Glia 67, 539–550 (2019).

    Google Scholar 

  155. Tan, Y. et al. Rational design of thermosensitive hydrogel to deliver nanocrystals with intranasal administration for brain targeting in Parkinson’s disease. Research 2021, 9812523 (2021).

    Google Scholar 

  156. Henrich, M. T., Oertel, W. H., Surmeier, D. J. & Geibl, F. F. Mitochondrial dysfunction in Parkinson’s disease - a key disease hallmark with therapeutic potential. Mol. Neurodegener. 18, 83 (2023).

    Google Scholar 

  157. Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in physiology and disease. Annu Rev. Physiol. 79, 619–643 (2017).

    Google Scholar 

  158. Sugama, S. et al. Chronic restraint stress triggers dopaminergic and noradrenergic neurodegeneration: possible role of chronic stress in the onset of Parkinson’s disease. Brain Behav. Immun. 51, 39–46 (2016).

    Google Scholar 

  159. Possel, H., Noack, H., Putzke, J., Wolf, G. & Sies, H. Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 32, 51–59 (2000).

    Google Scholar 

  160. Ferger, A. I. et al. Effects of mitochondrial dysfunction on the immunological properties of microglia. J. Neuroinflammation 7, 45 (2010).

    Google Scholar 

  161. Salim, S., Ahmad, F., Banu, A. & Mohammad, F. Gut microbiome and Parkinson’s disease: perspective on pathogenesis and treatment. J. Adv. Res. 50, 83–105 (2023).

    Google Scholar 

  162. Mo, M. et al. Soluble triggering receptor expressed on myeloid cells 2 from cerebrospinal fluid in sleep disorders related to Parkinson’s disease. Front. Aging Neurosci. 13, 753210 (2021).

    Google Scholar 

  163. Wilson, E. N. et al. Parkinson’s disease is characterized by vitamin B6-dependent inflammatory kynurenine pathway dysfunction. npj Parkinsons Dis. 11, 96 (2025).

    Google Scholar 

  164. Yang, D. et al. Longitudinal associations between cerebrospinal fluid glial activation markers, depression, and dopamine transporter availability in patients with Parkinson’s disease. J. Neurol. 272, 23 (2024).

    Google Scholar 

  165. Lan, G. et al. Higher plasma soluble TREM2 correlates with reduced cerebral tau accumulation in Alzheimer’s disease. Mol. Psychiatry https://doi.org/10.1038/s41380-025-02976-4 (2025).

  166. Yuan, P. et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90, 724–739 (2016).

    Google Scholar 

  167. Swanson, M. E. V. et al. Neuronal TDP-43 aggregation drives changes in microglial morphology prior to immunophenotype in amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 13, 39 (2025).

    Google Scholar 

  168. Li, W. et al. Boosting microglial lipid metabolism via TREM2 signaling by biomimetic nanoparticles to attenuate the sevoflurane-induced developmental neurotoxicity. Adv. Sci. 11, e2305989 (2024).

    Google Scholar 

  169. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    Google Scholar 

  170. Li, R. Y. et al. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol. Neurodegener. 17, 40 (2022).

    Google Scholar 

  171. van Lengerich, B. et al. A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat. Neurosci. 26, 416–429 (2023).

    Google Scholar 

  172. Wang, S. et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med. 217, https://doi.org/10.1084/jem.20200785 (2020).

  173. Kober, D. L. et al. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. Elife 5, https://doi.org/10.7554/eLife.20391 (2016).

  174. Di Luccia, B. et al. TREM2 deficiency reprograms intestinal macrophages and microbiota to enhance anti-PD-1 tumor immunotherapy. Sci. Immunol. 9, eadi5374 (2024).

    Google Scholar 

  175. Schmid, C. D. et al. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J. Neurochem. 83, 1309–1320 (2002).

    Google Scholar 

  176. Winfree, R. L. et al. Variants in the MS4A cluster interact with soluble TREM2 expression on biomarkers of neuropathology. Mol. Neurodegener. 19, 41 (2024).

    Google Scholar 

  177. Xu, Y. et al. The reciprocal interactions between microglia and T cells in Parkinson’s disease: a double-edged sword. J. Neuroinflammation 20, 33 (2023).

    Google Scholar 

  178. Chang, H. et al. Elevated blood and cerebrospinal fluid biomarkers of microglial activation and blood-brain barrier disruption in anti-NMDA receptor encephalitis. J. Neuroinflammation 20, 172 (2023).

    Google Scholar 

  179. Lempriere, S. TREM2 response occurs early in amyloid cascade. Nat. Rev. Neurol. 18, 251 (2022).

    Google Scholar 

  180. Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 213, 667–675 (2016).

    Google Scholar 

  181. Schlepckow, K., Morenas-Rodríguez, E., Hong, S. & Haass, C. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer’s disease. Lancet Neurol. 22, 1048–1060 (2023).

    Google Scholar 

  182. Yousefizadeh, A. et al. Pharmacological targeting of microglia dynamics in Alzheimer’s disease: Preclinical and clinical evidence. Pharm. Res. 184, 106404 (2022).

    Google Scholar 

  183. Yuan, S., Fuchs, N. S., Abdel-Rahman, S. A., Kaur, B. & Gabr, M. T. TREM2 and LAG-3 in cancer and Alzheimer’s disease immunotherapy. Trends Pharm. Sci. 46, 738–751 (2025).

    Google Scholar 

  184. Huang, W., Huang, J., Huang, N. & Luo, Y. The role of TREM2 in Alzheimer’s disease: from the perspective of Tau. Front. Cell Dev. Biol. 11, 1280257 (2023).

    Google Scholar 

  185. Yang, H., Kim, D., Yang, Y., Bagyinszky, E. & An, S. S. A. TREM2 in neurodegenerative disorders: mutation spectrum, pathophysiology, and therapeutic targeting. Int. J. Mol. Sci. 26, https://doi.org/10.3390/ijms26157057 (2025).

  186. Liu, X., Shen, L., Wan, M., Xie, H. & Wang, Z. Peripheral extracellular vesicles in neurodegeneration: pathogenic influencers and therapeutic vehicles. J. Nanobiotechnol. 22, 170 (2024).

    Google Scholar 

  187. Naser, S. S. et al. Posterity of nanoscience as lipid nanosystems for Alzheimer’s disease regression. Mater. Today Biol. 21, 100701 (2023).

    Google Scholar 

  188. Frisoni, G. B. et al. European intersocietal recommendations for the biomarker-based diagnosis of neurocognitive disorders. Lancet Neurol. 23, 302–312 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (32161143021, 81271410) and the Natural Science Foundation of Henan Province (182300410313).

Author information

Author notes
  1. These authors contributed equally: Keyuan Hou, Zhaowu An, Yuxiang Xu.

Authors and Affiliations

  1. Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China

    Keyuan Hou, Zhaowu An, Yuxiang Xu, Jing Wang, Meiru Zhou, Ye Liu, Xianfeng Zhu & Jianshe Wei

  2. Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng, China

    Xianfeng Zhu

Authors
  1. Keyuan Hou
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhaowu An
    View author publications

    Search author on:PubMed Google Scholar

  3. Yuxiang Xu
    View author publications

    Search author on:PubMed Google Scholar

  4. Jing Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Meiru Zhou
    View author publications

    Search author on:PubMed Google Scholar

  6. Ye Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Xianfeng Zhu
    View author publications

    Search author on:PubMed Google Scholar

  8. Jianshe Wei
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.H. and Y.X. conceived the title, prepared the initial draft, and designed the figures. Z.A. and J.W. (Jing Wang), and M.Z. assisted in drafting and revising the manuscript, and preparing the final version. Y.L., K.H., X.Z., and J.W. (Jianshe Wei) helped prepare the final manuscript, critically revised the manuscript, and supervised the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xianfeng Zhu or Jianshe Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, K., An, Z., Xu, Y. et al. Parkinson’s disease: spatiotemporal regulation and therapeutic prospects of TREM2-mediated microglial responses. npj Parkinsons Dis. (2026). https://doi.org/10.1038/s41531-025-01247-x

Download citation

  • Received: 18 July 2025

  • Accepted: 18 December 2025

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41531-025-01247-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner
  • 5 Questions with Our Editor-in-Chief

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Parkinson's Disease (npj Parkinsons Dis.)

ISSN 2373-8057 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing