Fig. 1: Optimal values of \(v(\Omega )\) with different verification strategies for the two-qubit entangled pure state \(\left|\psi \right\rangle =\cos \theta \left|00\right\rangle +\sin \theta \left|11\right\rangle\) with \(0\,<\,\theta \,<\,\pi /4\). | npj Quantum Information

Fig. 1: Optimal values of \(v(\Omega )\) with different verification strategies for the two-qubit entangled pure state \(\left|\psi \right\rangle =\cos \theta \left|00\right\rangle +\sin \theta \left|11\right\rangle\) with \(0\,<\,\theta \,<\,\pi /4\).

From: Optimal verification of general bipartite pure states

Fig. 1

Note that when \(\theta =\pi /4\), i.e., \(\left|\psi \right\rangle\) is the maximally entangled state, all three strategies give the same optimal value \(v(\Omega )=2/3\).

Back to article page