Table 1 Experimental results of χ for 26 different states being tested.

From: State-independent test of quantum contextuality with either single photons or coherent light

State

χ

SD

\(\left|{{{\Psi }}}_{1}\right\rangle =\left|0\right\rangle\)

5.866(4)

513

\(\left|{{{\Psi }}}_{2}\right\rangle =\left|1\right\rangle\)

5.877(3)

539

\(\left|{{{\Psi }}}_{3}\right\rangle =\left|2\right\rangle\)

5.843(4)

469

\(\left|{{{\Psi }}}_{4}\right\rangle =\left|3\right\rangle\)

5.875(4)

532

\(\left|{{{\Psi }}}_{5}\right\rangle =(\left|0\right\rangle +\left|1\right\rangle )/\sqrt{2}\)

5.839(4)

460

\(\left|{{{\Psi }}}_{6}\right\rangle =(\left|0\right\rangle +\left|2\right\rangle )/\sqrt{2}\)

5.839(4)

461

\(\left|{{{\Psi }}}_{7}\right\rangle =(\left|0\right\rangle +\left|3\right\rangle )/\sqrt{2}\)

5.856(4)

493

\(\left|{{{\Psi }}}_{8}\right\rangle =(\left|1\right\rangle +\left|2\right\rangle )/\sqrt{2}\)

5.841(4)

467

\(\left|{{{\Psi }}}_{9}\right\rangle =(\left|1\right\rangle +\left|3\right\rangle )/\sqrt{2}\)

5.854(4)

488

\(\left|{{{\Psi }}}_{10}\right\rangle =(\left|2\right\rangle +\left|3\right\rangle )/\sqrt{2}\)

5.856(4)

491

\(\left|{{{\Psi }}}_{11}\right\rangle =(\left|0\right\rangle +\left|1\right\rangle +\left|2\right\rangle )/\sqrt{3}\)

5.817(4)

427

\(\left|{{{\Psi }}}_{12}\right\rangle =(\left|0\right\rangle +\left|1\right\rangle +\left|3\right\rangle )/\sqrt{3}\)

5.834(4)

453

\(\left|{{{\Psi }}}_{13}\right\rangle =(\left|0\right\rangle +\left|2\right\rangle +\left|3\right\rangle )/\sqrt{3}\)

5.824(4)

438

\(\left|{{{\Psi }}}_{14}\right\rangle =(\left|1\right\rangle +\left|2\right\rangle +\left|3\right\rangle )/\sqrt{3}\)

5.836(4)

456

\(\left|{{{\Psi }}}_{15}\right\rangle =(\left|0\right\rangle +\left|1\right\rangle +\left|2\right\rangle +\left|3\right\rangle )/2\)

5.863(4)

507

\({\rho }_{16}=(\left|0\right\rangle \left\langle 0\right|+\left|1\right\rangle \left\langle 1\right|)/2\)

5.819(4)

432

\({\rho }_{17}=(\left|0\right\rangle \left\langle 0\right|+\left|2\right\rangle \left\langle 2\right|)/2\)

5.832(4)

450

\({\rho }_{18}=(\left|0\right\rangle \left\langle 0\right|+\left|3\right\rangle \left\langle 3\right|)/2\)

5.833(4)

451

\({\rho }_{19}=(\left|1\right\rangle \left\langle 1\right|+\left|2\right\rangle \left\langle 2\right|)/2\)

5.813(4)

421

\({\rho }_{20}=(\left|1\right\rangle \left\langle 1\right|+\left|3\right\rangle \left\langle 3\right|)/2\)

5.800(4)

406

\({\rho }_{21}=(\left|2\right\rangle \left\langle 2\right|+\left|3\right\rangle \left\langle 3\right|)/2\)

5.823(4)

436

\({\rho }_{22}=(\left|0\right\rangle \left\langle 0\right|+\left|1\right\rangle \left\langle 1\right|+\left|2\right\rangle \left\langle 2\right|)/3\)

5.825(4)

440

\({\rho }_{23}=(\left|0\right\rangle \left\langle 0\right|+\left|1\right\rangle \left\langle 1\right|+\left|3\right\rangle \left\langle 3\right|)/3\)

5.827(4)

443

\({\rho }_{24}=(\left|0\right\rangle \left\langle 0\right|+\left|2\right\rangle \left\langle 2\right|+\left|3\right\rangle \left\langle 3\right|)/3\)

5.814(4)

425

\({\rho }_{25}=(\left|1\right\rangle \left\langle 1\right|+\left|2\right\rangle \left\langle 2\right|+\left|3\right\rangle \left\langle 3\right|)/3\)

5.813(4)

421

\({\rho }_{26}=\left(\left|0\right\rangle \left\langle 0\right|+\left|1\right\rangle \left\langle 1\right|+\left|2\right\rangle \left\langle 2\right|+\left|3\right\rangle \left\langle 3\right|\right./4\)

5.784(5)

387

  1. Error bars indicate the statistical uncertainty, which is obtained based on assuming Poissonian statistics.
  2. SD standard deviation.