Fig. 2: Visualization of the full privacy attack process.

a Visualization of the difference between the circuit implementation of a variational quantum model and a Lie algebraic simulation procedure of the same model38. In the Lie algebraic Simulation framework38, input data x is encoded into a quantum circuit using V(x), however, the measurements are then performed on this encoded state and used to form a vector of snapshot expectation values. This vector of snapshot expectation values can then be passed as inputs to a classical simulator that uses the adjoint form of U(θ), which can be performed with resources scaling with the dimension of the DLA formed by the generators of U(θ). b In this work, we assess the ability to recover an input x from gradients Cj. This can be broken into two parts: Firstly, the snapshot esnap must be recovered from the gradients Cj, which corresponds to reversing the Lie algebraic simulation step. Secondly, the recovered snapshot esnap must be inverted to find the original data x, which requires finding the values of x that when input into V(x) will give the same snapshot values esnap. If both snapshot recovery and snapshot inversion can be performed, then it admits efficient input recovery.