Abstract
Silicon quantum dots are one of the most promising candidates for practical quantum computers because of their scalability and compatibility with the well-established complementary metal-oxide-semiconductor technology. However, the coherence time is limited in industry-standard natural silicon because of the 29Si isotopes, which have non-zero nuclear spin. Here, we protect an isotopically natural silicon metal-oxide-semiconductor (Si-MOS) quantum dot spin qubit from environmental noise via electron spin resonance with a phase-modulated microwave (MW) drive. This concatenated continuous drive (CCD) method extends the decay time of Rabi oscillations from 1.2 μs to over 200 μs. Furthermore, we define a protected qubit basis and propose robust gate operations. We find the coherence time measured by Ramsey sequence is improved from 143 ns to 40.7 μs compared to that of the bare spin qubit. The single qubit gate fidelity measured with randomized benchmarking is improved from 95% to 99%, underscoring the effectiveness of the CCD method. The method shows promise for improving control fidelity of noisy qubits, overcoming the qubit variability for global control, and maintaining qubit coherence while idling.
Similar content being viewed by others
Data availability
Data is available from the corresponding author upon reasonable request.
References
Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).
Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).
Huang, J. Y. et al. High-fidelity spin qubit operation and algorithmic initialization above 1 k. Nature 627, 772–777 (2024).
Undseth, B. et al. Hotter is easier: unexpected temperature dependence of spin qubit frequencies. Phy. Rev. X 13, 041015 (2023).
Gonzalez-Zalba, M. et al. Scaling silicon-based quantum computing using cmos technology. Nat. Electron. 4, 872–884 (2021).
Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).
Le Guevel, L. et al. Low-power transimpedance amplifier for cryogenic integration with quantum devices. Appl. Phys. Rev. 7, 041407 (2020).
Curry, M. J. et al. Single-shot readout performance of two heterojunction-bipolar-transistor amplification circuits at millikelvin temperatures. Sci. Rep. 9, 16976 (2019).
Charbon, E. et al. Cryo-CMOS for quantum computing. In Proc. IEEE International Electron Devices Meeting (IEDM) 13.5.1–13.5.4 (IEEE, 2016).
De Michielis, M. et al. Silicon spin qubits from laboratory to industry. J. Phys. D Appl. Phys. 56, 363001 (2023).
Zwerver, A. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).
Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).
Assali, L. V. et al. Hyperfine interactions in silicon quantum dots. Phys. Rev. B 83, 165301 (2011).
Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).
Bermeister, A., Keith, D. & Culcer, D. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits. Appl. Phys. Lett. 105, 192102 (2014).
Huang, P. & Hu, X. Electron spin relaxation due to charge noise. Phys. Rev. B 89, 195302 (2014).
Freeman, B. M., Schoenfield, J. S. & Jiang, H. Comparison of low frequency charge noise in identically patterned Si/SiO2 and Si/sige quantum dots. Appl. Phys. Lett. 108, 253108 (2016).
Witzel, W. M., Carroll, M. S., Morello, A., Cywiński, Ł. & Das Sarma, S. Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 105, 187602 (2010).
Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).
Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).
Acharya, R. et al. Highly 28Si enriched silicon by localised focused ion beam implantation. Commun. Mater. 5, 57 (2024).
Elsayed, A. et al. Low charge noise quantum dots with industrial CMOS manufacturing. npj Quantum Inf. 10, 70 (2024).
Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).
Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).
Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).
Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).
Steinacker, P. et al. Industry-compatible silicon spin-qubit unit cells exceeding 99% fidelity. Nature 646, 1 (2025).
Wu, Y.-H. et al. Simultaneous high-fidelity single-qubit gates in a spin qubit array. Preprint at https://doi.org/10.48550/arXiv.2507.11918 (2025).
Yang, C. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).
Rimbach-Russ, M., Philips, S. G., Xue, X. & Vandersypen, L. M. Simple framework for systematic high-fidelity gate operations. Quantum Sci. Technol. 8, 045025 (2023).
Laucht, A. et al. A dressed spin qubit in silicon. Nat. Nanotechnol. 12, 61–66 (2017).
Cywiński, Ł, Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).
Hahn, E. L. Spin echoes. Phys. Rev. 80, 580 (1950).
Zhang, J., Souza, A. M., Brandao, F. D. & Suter, D. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112, 050502 (2014).
Van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).
Wang, Z.-H. et al. Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon. Phys. Rev. B 85, 085206 (2012).
Hansen, I. et al. Pulse engineering of a global field for robust and universal quantum computation. Phys. Rev. A 104, 062415 (2021).
Hansen, I. et al. Implementation of an advanced dressing protocol for global qubit control in silicon. Appl. Phys. Rev. 9, 031409 (2022).
Hansen, I. et al. Entangling gates on degenerate spin qubits dressed by a global field. Nat. Commun. 15, 7656 (2024).
Wang, G., Liu, Y.-X. & Cappellaro, P. Coherence protection and decay mechanism in qubit ensembles under concatenated continuous driving. New J. Phys. 22, 123045 (2020).
Stark, A. et al. Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nat. Commun. 8, 1105 (2017).
Ramsay, A. J. et al. Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 14, 461 (2023).
Kuno, T. et al. Concatenated continuous driving for extending lifetime of spin qubits towards a scalable silicon quantum computer. In Proc. IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 1–2 (IEEE, 2024).
Cohen, I., Aharon, N. & Retzker, A. Continuous dynamical decoupling utilizing time-dependent detuning. Fortschr. Phys. 65, 1600071 (2017).
Bosco, S. et al. Phase-driving hole spin qubits. Phys. Rev. Lett. 131, 197001 (2023).
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).
Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).
Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).
Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter. 27, 154205 (2015).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Dumoulin Stuyck, N. et al. Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis. Appl. Phys. Lett. 124, 114003 (2024).
Elzerman, J. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).
Wang, G., Liu, Y.-X. & Cappellaro, P. Observation of the high-order mollow triplet by quantum mode control with concatenated continuous driving. Phys. Rev. A 103, 022415 (2021).
Shulman, M. D. et al. Suppressing qubit dephasing using real-time Hamiltonian estimation. Nat. Commun. 5, 5156 (2014).
Nakajima, T. et al. Coherence of a driven electron spin qubit actively decoupled from quasistatic noise. Phys. Rev. X 10, 011060 (2020).
Berritta, F. et al. Real-time two-axis control of a spin qubit. Nat. Commun. 15, 1676 (2024).
Stano, P. & Loss, D. Review of performance metrics of spin qubits in gated semiconducting nanostructures. Nat. Rev. Phys. 4, 672–688 (2022).
Fogarty, M. A. et al. Nonexponential fidelity decay in randomized benchmarking with low-frequency noise. Phys. Rev. A 92, 022326 (2015).
Tanttu, T. et al. Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots. Nat. Phys. 20, 1804–1809 (2024).
Vahapoglu, E. et al. Single-electron spin resonance in a nanoelectronic device using a global field. Sci. Adv. 7, eabg9158 (2021).
Vahapoglu, E. et al. Coherent control of electron spin qubits in silicon using a global field. npj Quantum Inf. 8, 126 (2022).
Anastasiou, P. G., Chen, Y., Mayhall, N. J., Barnes, E. & Economou, S. E. Tetris-adapt-vqe: an adaptive algorithm that yields shallower, denser circuit ansätze. Phys. Rev. Res. 6, 013254 (2024).
Long, C. K., Dalton, K., Barnes, C. H., Arvidsson-Shukur, D. R. & Mertig, N. Layering and subpool exploration for adaptive variational quantum eigensolvers: reducing circuit depth, runtime, and susceptibility to noise. Phys. Rev. A 109, 042413 (2024).
Lee, N. et al. Enhancing electrostatic coupling in silicon quantum dot array by dual gate oxide thickness for large-scale integration. Appl. Phys. Lett.< 116, 162106 (2020).
Kuno, T. et al. Single-electron charge sensor self-aligned to a quantum dot array by double-gate patterning process. Jpn. J. Appl. Phys. 64, 011001 (2025).
Acknowledgements
This work was supported by JST Moonshot R&D Grant Number JPMJMS2065, Grants-in-Aid for Scientific Research grant numbers JP23H05455 and JP23K17327, and JST PRESTO Grant Number JPMJPR21BA.
Author information
Authors and Affiliations
Contributions
T.Ku. performed the experiment and analyzed the data. T.Ku., T.U., A.J.R., N.M., R.M., T.N, J.Y., T.Ko., S.S., D.H. and R.T. discussed the results. T.Ku., T.U. and N.K contributed to the measurement setup. N.L., I.Y., T.M., D.H., and R.T. designed and fabricated the device. T.Ku., T.U,. and A.J.R. performed calculations. T.Ku. and A.J.R. wrote the manuscript with input from all co-authors. H.M. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Kuno, T., Utsugi, T., Ramsay, A.J. et al. Robust spin-qubit control in a natural Si-MOS quantum dot using phase modulation. npj Quantum Inf (2026). https://doi.org/10.1038/s41534-026-01185-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41534-026-01185-3


