Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Information
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum information
  3. articles
  4. article
Robust spin-qubit control in a natural Si-MOS quantum dot using phase modulation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Robust spin-qubit control in a natural Si-MOS quantum dot using phase modulation

  • Takuma Kuno1,2,
  • Takeru Utsugi1,
  • Andrew J. Ramsay3,
  • Normann Mertig3,
  • Noriyuki Lee1,
  • Itaru Yanagi1,
  • Toshiyuki Mine1,
  • Nobuhiro Kusuno1,
  • Raisei Mizokuchi2,
  • Takashi Nakajima4,
  • Shinichi Saito1,
  • Digh Hisamoto1,
  • Ryuta Tsuchiya1,
  • Jun Yoneda5,6,
  • Tetsuo Kodera2 &
  • …
  • Hiroyuki Mizuno1 

npj Quantum Information , Article number:  (2026) Cite this article

  • 761 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic and spintronic devices
  • Quantum physics

Abstract

Silicon quantum dots are one of the most promising candidates for practical quantum computers because of their scalability and compatibility with the well-established complementary metal-oxide-semiconductor technology. However, the coherence time is limited in industry-standard natural silicon because of the 29Si isotopes, which have non-zero nuclear spin. Here, we protect an isotopically natural silicon metal-oxide-semiconductor (Si-MOS) quantum dot spin qubit from environmental noise via electron spin resonance with a phase-modulated microwave (MW) drive. This concatenated continuous drive (CCD) method extends the decay time of Rabi oscillations from 1.2 μs to over 200 μs. Furthermore, we define a protected qubit basis and propose robust gate operations. We find the coherence time measured by Ramsey sequence is improved from 143 ns to 40.7 μs compared to that of the bare spin qubit. The single qubit gate fidelity measured with randomized benchmarking is improved from 95% to 99%, underscoring the effectiveness of the CCD method. The method shows promise for improving control fidelity of noisy qubits, overcoming the qubit variability for global control, and maintaining qubit coherence while idling.

Similar content being viewed by others

Passive and active suppression of transduced noise in silicon spin qubits

Article Open access 02 January 2025

Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots

Article Open access 20 August 2024

A shuttling-based two-qubit logic gate for linking distant silicon quantum processors

Article Open access 30 September 2022

Data availability

Data is available from the corresponding author upon reasonable request.

References

  1. Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).

    Google Scholar 

  2. Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).

    Google Scholar 

  3. Huang, J. Y. et al. High-fidelity spin qubit operation and algorithmic initialization above 1 k. Nature 627, 772–777 (2024).

    Google Scholar 

  4. Undseth, B. et al. Hotter is easier: unexpected temperature dependence of spin qubit frequencies. Phy. Rev. X 13, 041015 (2023).

    Google Scholar 

  5. Gonzalez-Zalba, M. et al. Scaling silicon-based quantum computing using cmos technology. Nat. Electron. 4, 872–884 (2021).

    Google Scholar 

  6. Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

    Google Scholar 

  7. Le Guevel, L. et al. Low-power transimpedance amplifier for cryogenic integration with quantum devices. Appl. Phys. Rev. 7, 041407 (2020).

    Google Scholar 

  8. Curry, M. J. et al. Single-shot readout performance of two heterojunction-bipolar-transistor amplification circuits at millikelvin temperatures. Sci. Rep. 9, 16976 (2019).

    Google Scholar 

  9. Charbon, E. et al. Cryo-CMOS for quantum computing. In Proc. IEEE International Electron Devices Meeting (IEDM) 13.5.1–13.5.4 (IEEE, 2016).

  10. De Michielis, M. et al. Silicon spin qubits from laboratory to industry. J. Phys. D Appl. Phys. 56, 363001 (2023).

    Google Scholar 

  11. Zwerver, A. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).

    Google Scholar 

  12. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Google Scholar 

  13. Assali, L. V. et al. Hyperfine interactions in silicon quantum dots. Phys. Rev. B 83, 165301 (2011).

    Google Scholar 

  14. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    Google Scholar 

  15. Bermeister, A., Keith, D. & Culcer, D. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits. Appl. Phys. Lett. 105, 192102 (2014).

    Google Scholar 

  16. Huang, P. & Hu, X. Electron spin relaxation due to charge noise. Phys. Rev. B 89, 195302 (2014).

    Google Scholar 

  17. Freeman, B. M., Schoenfield, J. S. & Jiang, H. Comparison of low frequency charge noise in identically patterned Si/SiO2 and Si/sige quantum dots. Appl. Phys. Lett. 108, 253108 (2016).

    Google Scholar 

  18. Witzel, W. M., Carroll, M. S., Morello, A., Cywiński, Ł. & Das Sarma, S. Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 105, 187602 (2010).

    Google Scholar 

  19. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

    Google Scholar 

  20. Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).

    Google Scholar 

  21. Acharya, R. et al. Highly 28Si enriched silicon by localised focused ion beam implantation. Commun. Mater. 5, 57 (2024).

    Google Scholar 

  22. Elsayed, A. et al. Low charge noise quantum dots with industrial CMOS manufacturing. npj Quantum Inf. 10, 70 (2024).

    Google Scholar 

  23. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Google Scholar 

  24. Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).

    Google Scholar 

  25. Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).

    Google Scholar 

  26. Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).

    Google Scholar 

  27. Steinacker, P. et al. Industry-compatible silicon spin-qubit unit cells exceeding 99% fidelity. Nature 646, 1 (2025).

    Google Scholar 

  28. Wu, Y.-H. et al. Simultaneous high-fidelity single-qubit gates in a spin qubit array. Preprint at https://doi.org/10.48550/arXiv.2507.11918 (2025).

  29. Yang, C. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).

    Google Scholar 

  30. Rimbach-Russ, M., Philips, S. G., Xue, X. & Vandersypen, L. M. Simple framework for systematic high-fidelity gate operations. Quantum Sci. Technol. 8, 045025 (2023).

    Google Scholar 

  31. Laucht, A. et al. A dressed spin qubit in silicon. Nat. Nanotechnol. 12, 61–66 (2017).

    Google Scholar 

  32. Cywiński, Ł, Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Google Scholar 

  33. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580 (1950).

    Google Scholar 

  34. Zhang, J., Souza, A. M., Brandao, F. D. & Suter, D. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112, 050502 (2014).

    Google Scholar 

  35. Van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).

    Google Scholar 

  36. Wang, Z.-H. et al. Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon. Phys. Rev. B 85, 085206 (2012).

    Google Scholar 

  37. Hansen, I. et al. Pulse engineering of a global field for robust and universal quantum computation. Phys. Rev. A 104, 062415 (2021).

    Google Scholar 

  38. Hansen, I. et al. Implementation of an advanced dressing protocol for global qubit control in silicon. Appl. Phys. Rev. 9, 031409 (2022).

  39. Hansen, I. et al. Entangling gates on degenerate spin qubits dressed by a global field. Nat. Commun. 15, 7656 (2024).

    Google Scholar 

  40. Wang, G., Liu, Y.-X. & Cappellaro, P. Coherence protection and decay mechanism in qubit ensembles under concatenated continuous driving. New J. Phys. 22, 123045 (2020).

    Google Scholar 

  41. Stark, A. et al. Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nat. Commun. 8, 1105 (2017).

    Google Scholar 

  42. Ramsay, A. J. et al. Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 14, 461 (2023).

    Google Scholar 

  43. Kuno, T. et al. Concatenated continuous driving for extending lifetime of spin qubits towards a scalable silicon quantum computer. In Proc. IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 1–2 (IEEE, 2024).

  44. Cohen, I., Aharon, N. & Retzker, A. Continuous dynamical decoupling utilizing time-dependent detuning. Fortschr. Phys. 65, 1600071 (2017).

    Google Scholar 

  45. Bosco, S. et al. Phase-driving hole spin qubits. Phys. Rev. Lett. 131, 197001 (2023).

    Google Scholar 

  46. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Google Scholar 

  47. Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).

    Google Scholar 

  48. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Google Scholar 

  49. Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter. 27, 154205 (2015).

    Google Scholar 

  50. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Google Scholar 

  51. Dumoulin Stuyck, N. et al. Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis. Appl. Phys. Lett. 124, 114003 (2024).

  52. Elzerman, J. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Google Scholar 

  53. Wang, G., Liu, Y.-X. & Cappellaro, P. Observation of the high-order mollow triplet by quantum mode control with concatenated continuous driving. Phys. Rev. A 103, 022415 (2021).

    Google Scholar 

  54. Shulman, M. D. et al. Suppressing qubit dephasing using real-time Hamiltonian estimation. Nat. Commun. 5, 5156 (2014).

    Google Scholar 

  55. Nakajima, T. et al. Coherence of a driven electron spin qubit actively decoupled from quasistatic noise. Phys. Rev. X 10, 011060 (2020).

    Google Scholar 

  56. Berritta, F. et al. Real-time two-axis control of a spin qubit. Nat. Commun. 15, 1676 (2024).

    Google Scholar 

  57. Stano, P. & Loss, D. Review of performance metrics of spin qubits in gated semiconducting nanostructures. Nat. Rev. Phys. 4, 672–688 (2022).

    Google Scholar 

  58. Fogarty, M. A. et al. Nonexponential fidelity decay in randomized benchmarking with low-frequency noise. Phys. Rev. A 92, 022326 (2015).

    Google Scholar 

  59. Tanttu, T. et al. Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots. Nat. Phys. 20, 1804–1809 (2024).

    Google Scholar 

  60. Vahapoglu, E. et al. Single-electron spin resonance in a nanoelectronic device using a global field. Sci. Adv. 7, eabg9158 (2021).

    Google Scholar 

  61. Vahapoglu, E. et al. Coherent control of electron spin qubits in silicon using a global field. npj Quantum Inf. 8, 126 (2022).

    Google Scholar 

  62. Anastasiou, P. G., Chen, Y., Mayhall, N. J., Barnes, E. & Economou, S. E. Tetris-adapt-vqe: an adaptive algorithm that yields shallower, denser circuit ansätze. Phys. Rev. Res. 6, 013254 (2024).

    Google Scholar 

  63. Long, C. K., Dalton, K., Barnes, C. H., Arvidsson-Shukur, D. R. & Mertig, N. Layering and subpool exploration for adaptive variational quantum eigensolvers: reducing circuit depth, runtime, and susceptibility to noise. Phys. Rev. A 109, 042413 (2024).

    Google Scholar 

  64. Lee, N. et al. Enhancing electrostatic coupling in silicon quantum dot array by dual gate oxide thickness for large-scale integration. Appl. Phys. Lett.< 116, 162106 (2020).

  65. Kuno, T. et al. Single-electron charge sensor self-aligned to a quantum dot array by double-gate patterning process. Jpn. J. Appl. Phys. 64, 011001 (2025).

    Google Scholar 

Download references

Acknowledgements

This work was supported by JST Moonshot R&D Grant Number JPMJMS2065, Grants-in-Aid for Scientific Research grant numbers JP23H05455 and JP23K17327, and JST PRESTO Grant Number JPMJPR21BA.

Author information

Authors and Affiliations

  1. Research and Development Group, Hitachi, Ltd, Kokubunji, Tokyo, Japan

    Takuma Kuno, Takeru Utsugi, Noriyuki Lee, Itaru Yanagi, Toshiyuki Mine, Nobuhiro Kusuno, Shinichi Saito, Digh Hisamoto, Ryuta Tsuchiya & Hiroyuki Mizuno

  2. Department of Electrical and Electronic Engineering, Institute of Science Tokyo, Meguro, Tokyo, Japan

    Takuma Kuno, Raisei Mizokuchi & Tetsuo Kodera

  3. Hitachi Cambridge Laboratory, Cambridge, UK

    Andrew J. Ramsay & Normann Mertig

  4. Center for Emergent Matter Science, RIKEN, Wako shi, Saitama, Japan

    Takashi Nakajima

  5. Academy of Super Smart Society, Institute of Science Tokyo, Meguro, Tokyo, Japan

    Jun Yoneda

  6. Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba, Japan

    Jun Yoneda

Authors
  1. Takuma Kuno
    View author publications

    Search author on:PubMed Google Scholar

  2. Takeru Utsugi
    View author publications

    Search author on:PubMed Google Scholar

  3. Andrew J. Ramsay
    View author publications

    Search author on:PubMed Google Scholar

  4. Normann Mertig
    View author publications

    Search author on:PubMed Google Scholar

  5. Noriyuki Lee
    View author publications

    Search author on:PubMed Google Scholar

  6. Itaru Yanagi
    View author publications

    Search author on:PubMed Google Scholar

  7. Toshiyuki Mine
    View author publications

    Search author on:PubMed Google Scholar

  8. Nobuhiro Kusuno
    View author publications

    Search author on:PubMed Google Scholar

  9. Raisei Mizokuchi
    View author publications

    Search author on:PubMed Google Scholar

  10. Takashi Nakajima
    View author publications

    Search author on:PubMed Google Scholar

  11. Shinichi Saito
    View author publications

    Search author on:PubMed Google Scholar

  12. Digh Hisamoto
    View author publications

    Search author on:PubMed Google Scholar

  13. Ryuta Tsuchiya
    View author publications

    Search author on:PubMed Google Scholar

  14. Jun Yoneda
    View author publications

    Search author on:PubMed Google Scholar

  15. Tetsuo Kodera
    View author publications

    Search author on:PubMed Google Scholar

  16. Hiroyuki Mizuno
    View author publications

    Search author on:PubMed Google Scholar

Contributions

T.Ku. performed the experiment and analyzed the data. T.Ku., T.U., A.J.R., N.M., R.M., T.N, J.Y., T.Ko., S.S., D.H. and R.T. discussed the results. T.Ku., T.U. and N.K contributed to the measurement setup. N.L., I.Y., T.M., D.H., and R.T. designed and fabricated the device. T.Ku., T.U,. and A.J.R. performed calculations. T.Ku. and A.J.R. wrote the manuscript with input from all co-authors. H.M. supervised the project.

Corresponding author

Correspondence to Takuma Kuno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuno, T., Utsugi, T., Ramsay, A.J. et al. Robust spin-qubit control in a natural Si-MOS quantum dot using phase modulation. npj Quantum Inf (2026). https://doi.org/10.1038/s41534-026-01185-3

Download citation

  • Received: 11 April 2025

  • Accepted: 12 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41534-026-01185-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Information (npj Quantum Inf)

ISSN 2056-6387 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing