Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum materials
  3. articles
  4. article
Optical diode effect at telecom wavelengths in a polar magnet
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

Optical diode effect at telecom wavelengths in a polar magnet

  • Kevin A. Smith  ORCID: orcid.org/0000-0001-6635-39151,
  • Yanhong Gu1,
  • Xianghan Xu2,
  • Heung-Sik Kim3,
  • Sang-Wook Cheong2,4,
  • Scott A. Crooker5 &
  • …
  • Janice L. Musfeldt  ORCID: orcid.org/0000-0002-6241-823X1,6 

npj Quantum Materials , Article number:  (2026) Cite this article

  • 833 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Physics

Abstract

Magnetoelectric multiferroics such as rare earth manganites host nonreciprocal behavior driven by low symmetry, spin-orbit coupling, and toroidal moments, although less has been done to explore whether lanthanides like Er3+ might extend functionality into the hard infrared for optical communications purposes. In this work, we reveal nonreciprocity in the f-manifold crystal field excitations of h-Lu0.9Er0.1MnO3. In addition to contrast in the highest fields, we demonstrate nonreciprocity at technologically-relevant energy scales--specifically in the E-, S-, and C-bands of the telecom wavelength range--and at low magnetic fields and room temperature. In fact, the low field behavior is consistent with possible altermagnetism. These findings advance the overall understanding of localized excitations in rare earth-containing systems and pave the way for entirely new types of telecom applications.

Similar content being viewed by others

Nonreciprocal directional dichroism at telecom wavelengths

Article Open access 04 April 2022

Thermal multiferroics in all-inorganic quasi-two-dimensional halide perovskites

Article 05 January 2024

Indistinguishable telecom band photons from a single Er ion in the solid state

Article 30 August 2023

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due to active intellectual property considerations, but are available from the corresponding authors upon reasonable request.

References

  1. Kézsmárki, I. et al. One-way transparency of four-coloured spin-wave excitations in multiferroic materials. Nat. Commun. 5, 3203 (2014).

    Google Scholar 

  2. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Google Scholar 

  3. Narita, H. et al. Observation of nonreciprocal directional dichroism via electromagnon resonance in a chiral-lattice helimagnet Ba4NbFe3Si2O14. Phys. Rev. B 94, 094433 (2016).

    Google Scholar 

  4. Cheong, S.-W. & Huang, F.-T. Trompe L’oeil ferromagnetism—magnetic point group analysis. npj Quantum Mater. 8, 73 (2023).

    Google Scholar 

  5. Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4. Phys. Rev. Lett. 101, 117402 (2008).

    Google Scholar 

  6. Toyoda, S., Abe, N. & Arima, T. Gigantic directional asymmetry of luminescence in multiferroic CuB2O4. Phys. Rev. B 93, 201109 (2016).

    Google Scholar 

  7. Nikitchenko, A. I. & Pisarev, R. V. Magnetic and antiferromagnetic nonreciprocity of light propagation in magnetoelectric CuB2O4. Phys. Rev. B 104, 184108 (2021).

    Google Scholar 

  8. Boldyrev, K. N. et al. Nonreciprocity of optical absorption in the magnetoelectric antiferromagnet CuB2O4. Magnetochemistry 9 https://www.mdpi.com/2312-7481/9/4/95 (2023).

  9. Yu, S. et al. High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3O8. Phys. Rev. Lett. 120, 037601 (2018).

    Google Scholar 

  10. Kimura, K. & Kimura, T. Nonvolatile switching of large nonreciprocal optical absorption at shortwave infrared wavelengths. Phys. Rev. Lett. 132, 036901 (2024).

    Google Scholar 

  11. Tóth, B. et al. Imaging antiferromagnetic domains in LiCoPO4 via the optical magnetoelectric effect. Phys. Rev. B 110, L100405 (2024).

    Google Scholar 

  12. Shimada, Y., Kiyama, H. & Tokura, Y. Nonreciprocal directional dichroism in ferroelectric Nd2Ti2O7. J. Phys. Soc. Jpn 77, 33706 (2008).

    Google Scholar 

  13. Katsuyoshi, T. et al. Nonreciprocal directional dichroism in a magnetic-field-induced ferroelectric phase of Pb(TiO)Cu4(PO4)4. J. Phys. Soc. Jpn 90, 123701 (2021).

    Google Scholar 

  14. Yokosuk, M. O. et al. Nonreciprocal directional dichroism of a chiral magnet in the visible range. npj Quantum Mater. 5, 20 (2020).

    Google Scholar 

  15. Sirenko, A. A. et al. Total angular momentum dichroism of the terahertz vortex beams at the antiferromagnetic resonances. Phys. Rev. Lett. 126, 157401 (2021).

    Google Scholar 

  16. Park, K. et al. Nonreciprocal directional dichroism at telecom wavelengths. npj Quantum Mater. 7, 38 (2022).

    Google Scholar 

  17. Gao, Y. & Xiao, D. Nonreciprocal directional dichroism induced by the quantum metric dipole. Phys. Rev. Lett. 122, 227402 (2019).

    Google Scholar 

  18. Tanabe, S. Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C. R. Chim. 5, 815–824 (2002).

    Google Scholar 

  19. Ulanowski, A., Merkel, B. & Reiserer, A. Spectral multiplexing of telecom emitters with stable transition frequency. Sci. Adv. 8, eabo4538 (2022).

    Google Scholar 

  20. Della Valle, F. & Modesti, S. Exchange-excited f − f transitions in the electron-energy-loss spectra of rare-earth metals. Phys. Rev. B 40, 933–941 (1989).

    Google Scholar 

  21. Florez, A., Messaddeq, Y., Malta, O. & Aegerter, M. Optical transition probabilities and compositional dependence of Judd-Ofelt parameters of Er3+ ions in fluoroindate glass. J. Alloy. Compd. 227, 135–140 (1995).

    Google Scholar 

  22. Desurvire, E. Erbium-Doped Fiber Amplifiers: Principles And Applications. (John Wiley & Sons, Inc., 1994).

    Google Scholar 

  23. Wang, Q., Dutta, N. K. & Ahrens, R. Spectroscopic properties of Er doped silica glasses. J. Appl. Phys. 95, 4025–4028 (2004).

    Google Scholar 

  24. Rao, R. et al. Multi-band luminescence from a rare earth-based two-dimensional material. Matter 8, 101929 (2025).

    Google Scholar 

  25. Zhai, Z. & Sahu, J. K. Progress in Er-doped fibers for extended L-band operation of amplifiers. Opt. Commun. 578, 131510 (2025).

    Google Scholar 

  26. Xin, F. et al. Observation of extreme nonreciprocal wave amplification from single soliton-soliton collisions. Phys. Rev. A 100, 043816 (2019).

    Google Scholar 

  27. Puel, T. O., Turflinger, A. T., Horvath, S. P., Thompson, J. D. & Flatt‚, M. E. Enhancement of microwave to optical spin-based quantum transduction via a magnon mode. Phys. Rev. Research 7, 033221 (2025).

    Google Scholar 

  28. Palstra, T. T. M. The Magneto-electric Properties of RMnO Compounds. (Springer, Berlin, Heidelberg, 2007). .

  29. Xu, L. et al. Strategy for achieving multiferroic E-type magnetic order in orthorhombic manganites RMnO3 (R = La-Lu). Phys. Chem. Chem. Phys. 22, 4905–4915 (2020).

    Google Scholar 

  30. Song, J. D. et al. Magnetization, specific heat, and thermal conductivity of hexagonal ErMnO3 single crystals. Phys. Rev. B 96, 174425 (2017).

    Google Scholar 

  31. Popova, M. N. et al. High-resolution optical spectroscopy and modeling of spectral and magnetic properties of multiferroic ErFe3(BO3)4. Phys. Rev. B 101, 205108 (2020).

    Google Scholar 

  32. Yen, F. et al. Magnetic phase diagrams of multiferroic hexagonal RMnO3 (R = Er, Yb, Tm, and Ho). J. Mater. Res. 22, 2163–2173 (2007).

    Google Scholar 

  33. Hlinka, J. Eight types of symmetrically distinct vectorlike physical quantities. Phys. Rev. Lett. 113, 165502 (2014).

    Google Scholar 

  34. Rikken, G. L. J. A., Strohm, C. & Wyder, P. Observation of magnetoelectric directional anisotropy. Phys. Rev. Lett. 89, 133005 (2002).

    Google Scholar 

  35. Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity, and multiferroicity. npj Quantum Mater. 3, 19 (2018).

    Google Scholar 

  36. Bordács, S. et al. Unidirectional terahertz light absorption in the pyroelectric ferrimagnet CaBaCo4O7. Phys. Rev. B 92, 214441 (2015).

    Google Scholar 

  37. Fishman, R. S. et al. Spin-induced polarizations and nonreciprocal directional dichroism of the room-temperature multiferroic BiFeO3. Phys. Rev. B 92, 094422 (2015).

    Google Scholar 

  38. Ding, Q. et al. Parity-time symmetry in parameter space of polarization. APL Photonics 6, 76102 (2021).

    Google Scholar 

  39. Kézsmárki, I. et al. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGeO7 oxide compound. Phys. Rev. Lett. 106, 057403 (2011).

    Google Scholar 

  40. Cheong, S.-W. & Huang, F.-T. Altermagnetism classification. npj Quantum Mater. 10, 38 (2025).

    Google Scholar 

  41. Van Aken, B. B., Meetsma, A. & Palstra, T. T. M. Hexagonal LuMnO3 revisited. Acta Crystallogr. E 57, i101–i103 (2001).

    Google Scholar 

Download references

Acknowledgements

Research at the University of Tennessee is supported by Condensed Matter Physics, Division of Materials Research, U. S. National Science Foundation (DMR-2226109). Work at Rutgers is funded by the W. M. Keck Foundation grant to the Keck Center for Quantum Magnetism at Rutgers University. The National High Magnetic Field Laboratory is supported by the National Science Foundation Cooperative Agreement DMR-2128556, the State of Florida, and the U.S. Department of Energy. H.S.K. was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Science and ICT [Grant No. NRF-2020R1C1C1005900, RS-2023-00220471].

Author information

Authors and Affiliations

  1. Department of Chemistry, University of Tennessee, Knoxville, TN, USA

    Kevin A. Smith, Yanhong Gu & Janice L. Musfeldt

  2. Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA

    Xianghan Xu & Sang-Wook Cheong

  3. Department of Semiconductor Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, Republic of Korea

    Heung-Sik Kim

  4. Keck Center for Quantum Magnetism, Rutgers University, Piscataway, NJ, USA

    Sang-Wook Cheong

  5. National High Magnetic Field Laboratory, Los Alamos, NM, USA

    Scott A. Crooker

  6. Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA

    Janice L. Musfeldt

Authors
  1. Kevin A. Smith
    View author publications

    Search author on:PubMed Google Scholar

  2. Yanhong Gu
    View author publications

    Search author on:PubMed Google Scholar

  3. Xianghan Xu
    View author publications

    Search author on:PubMed Google Scholar

  4. Heung-Sik Kim
    View author publications

    Search author on:PubMed Google Scholar

  5. Sang-Wook Cheong
    View author publications

    Search author on:PubMed Google Scholar

  6. Scott A. Crooker
    View author publications

    Search author on:PubMed Google Scholar

  7. Janice L. Musfeldt
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.L.M. and S.W.C. designed the study. X.X. grew the crystals under the supervision of S.W.C. K.A.S., S.A.C., and J.L.M. performed the pulsed field magneto-optical spectroscopies. K.A.S. and Y.G. analyzed the data with guidance from J.L.M. K.A.S. and J.L.M. developed the figures and wrote the manuscript. K.A.S., Y.G., X.X., H.S.K., S.W.C., S.A.C., and J.L.M. commented on the text.

Corresponding author

Correspondence to Janice L. Musfeldt.

Ethics declarations

Competing interests

Authors K.A.S., Y.G., X.X., H.S.K., S.A.C., and J.L.M. declare no competing interests. Author S.W.C. serves as an editor of this journal and had no role in the peer-review or decision to publish this paper. Author S.W.C. declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, K.A., Gu, Y., Xu, X. et al. Optical diode effect at telecom wavelengths in a polar magnet. npj Quantum Mater. (2026). https://doi.org/10.1038/s41535-026-00848-w

Download citation

  • Received: 03 July 2025

  • Accepted: 02 January 2026

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41535-026-00848-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Altermagnetic Materials and Phenomena

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Materials (npj Quantum Mater.)

ISSN 2397-4648 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing