Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum materials
  3. articles
  4. article
Kitaev interaction and proximate higher-order skyrmion crystal in the triangular lattice van der Waals antiferromagnet NiI2
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 January 2026

Kitaev interaction and proximate higher-order skyrmion crystal in the triangular lattice van der Waals antiferromagnet NiI2

  • Chaebin Kim1,2,3 na1,
  • Olivia Vilella3 na1,
  • Youjin Lee1,2 na1,
  • Pyeongjae Park1,2,
  • Yeochan An1,2,
  • Woonghee Cho1,2,
  • Matthew B. Stone4,
  • Alexander I. Kolesnikov4,
  • Yiqing Hao4,
  • Shinichiro Asai5,
  • Shinichi Itoh6,
  • Takatsugu Masuda5,
  • Sakib Matin7,8,
  • Yuna Kim9,
  • Sung-Jin Kim9,
  • Martin Mourigal3 &
  • …
  • Je-Geun Park1,2 

npj Quantum Materials , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ferroelectrics and multiferroics
  • Magnetic properties and materials
  • Spintronics

Abstract

Topological spin textures are a spectacular manifestation of the chirality of the magnetic nanostructures protected by topology. Most known skyrmion systems are restricted to a topological charge of one, require an external magnetic field for stabilization, and are only reported in a few materials. Here, we investigate the possibility that the Kitaev anisotropic-exchange interaction stabilizes a higher-order skyrmion crystal in the insulating van der Waals magnet NiI2. We unveil and explain the incommensurate static and dynamic magnetic correlations across three temperature-driven magnetic phases of this compound using neutron scattering measurements, simulations, and modeling. Our parameter optimisation yields a minimal Kitaev-Heisenberg Hamiltonian for NiI2 which reproduces the experimentally observed magnetic excitations. Monte Carlo simulations for this model predict the emergence of the higher-order skyrmion crystal but neutron diffraction and optical experiments in the candidate intermediate temperature regime are inconclusive. We discuss possible deviations from the Kitaev-Heisenberg model that explains our results and conclude that NiI2, in addition to multiferroic properties in the bulk and few-layer limits, is a Kitaev bulk material proximate to the finite temperature higher-order skyrmion crystal phase.

Similar content being viewed by others

Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2

Article Open access 16 April 2024

Room-temperature sub-100 nm Néel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe3-xGaTe2 with ultrafast laser writability

Article Open access 03 February 2024

Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet

Article Open access 05 December 2023

Data availability

The data that supports the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Google Scholar 

  2. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899 (2013).

    Google Scholar 

  3. Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotechnol. 10, 195 (2015).

    Google Scholar 

  4. Muhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915 (2009).

    Google Scholar 

  5. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797 (2006).

    Google Scholar 

  6. Wang, Z., Su, Y., Lin, S.-Z. & Batista, C. D. Meron, skyrmion, and vortex crystals in centrosymmetric tetragonal magnets. Phys. Rev. B 103, 104408 (2021).

    Google Scholar 

  7. Gao, S. et al. Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings. Nature 586, 37 (2020).

    Google Scholar 

  8. Ozawa, R., Hayami, S. & Motome, Y. Zero-field skyrmions with a high topological number in itinerant magnets. Phys. Rev. Lett. 118, 147205 (2017).

    Google Scholar 

  9. Tang, J. et al. Magnetic skyrmion bundles and their current-driven dynamics. Nat. Nanotechnol. 16, 1086 (2021).

    Google Scholar 

  10. Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1 (2021).

    Google Scholar 

  11. Amoroso, D., Barone, P. & Picozzi, S. Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a ni-halide monolayer. Nat. Commun. 11, 5784 (2020).

    Google Scholar 

  12. Zhang, X., Zhou, Y. & Ezawa, M. High-topological-number magnetic skyrmions and topologically protected dissipative structure. Phys. Rev. B 93, 024415 (2016).

    Google Scholar 

  13. Batista, C. D., Lin, S.-Z., Hayami, S. & Kamiya, Y. Frustration and chiral orderings in correlated electron systems. Rep. Prog. Phys. 79, 084504 (2016).

    Google Scholar 

  14. Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10, 5831 (2019).

    Google Scholar 

  15. Lin, S.-Z. & Hayami, S. Ginzburg-landau theory for skyrmions in inversion-symmetric magnets with competing interactions. Phys. Rev. B 93, 064430 (2016).

    Google Scholar 

  16. Hayami, S., Lin, S.-Z. & Batista, C. D. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy. Phys. Rev. B 93, 184413 (2016).

    Google Scholar 

  17. Hayami, S. & Motome, Y. Noncoplanar multiple-q spin textures by itinerant frustration: Effects of single-ion anisotropy and bond-dependent anisotropy. Phys. Rev. B 103, 054422 (2021).

    Google Scholar 

  18. Hayami, S., Ozawa, R. & Motome, Y. Effective bilinear-biquadratic model for noncoplanar ordering in itinerant magnets. Phys. Rev. B 95, 224424 (2017).

    Google Scholar 

  19. Yu, X. Z. et al. Biskyrmion states and their current-driven motion in a layered manganite. Nat. Commun. 5, 3198 (2014).

    Google Scholar 

  20. Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015).

    Google Scholar 

  21. McGuire, M. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

    Google Scholar 

  22. Kim, J. et al. Spin and lattice dynamics of the two-dimensional van der waals ferromagnet cri3. npj Quantum Mater. 9, 55 (2024).

    Google Scholar 

  23. Kuindersma, S., Sanchez, J. & Haas, C. Magnetic and structural investigations on NiI2 and CoI2. Phys. B+C. 111, 231 (1981).

    Google Scholar 

  24. Ju, H. et al. Possible persistence of multiferroic order down to bilayer limit of van der waals material NiI2. Nano Lett. 21, 5126 (2021).

    Google Scholar 

  25. Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).

    Google Scholar 

  26. Son, S. et al. Multiferroic-enabled magnetic-excitons in 2D quantum-entangled van der waals antiferromagnet NiI2. Adv. Mater. 34, (2022).

  27. Song, Q. et al. Evidence for a single-layer van der waals multiferroic. Nature 602, 601 (2022).

    Google Scholar 

  28. Bai, X. et al. Hybridized quadrupolar excitations in the spin-anisotropic frustrated magnet FeI2. Nat. Phys. 17, 467 (2021).

    Google Scholar 

  29. Kim, C. et al. Bond-dependent anisotropy and magnon decay in cobalt-based kitaev triangular antiferromagnet. Nat. Phys. 19, 1624 (2023).

    Google Scholar 

  30. Stavropoulos, P. P., Pereira, D. & Kee, H.-Y. Microscopic mechanism for a higher-spin kitaev model. Phys. Rev. Lett. 123, 037203 (2019).

    Google Scholar 

  31. Li, X. et al. Realistic spin model for multiferroic NiI2. Phys. Rev. Lett. 131, 036701 (2023).

    Google Scholar 

  32. Scheie, A. et al. Spin wave hamiltonian and anomalous scattering in NiPS3. Phys. Rev. B 108, 104402 (2023).

    Google Scholar 

  33. Stock, C. et al. Neutron-scattering measurement of incommensurate short-range order in single crystals of the S = 1 triangular antiferromagnet NiGa2S4. Phys. Rev. Lett. 105, 037402 (2010).

    Google Scholar 

  34. Wildes, A. R. et al. Magnetic dynamics of NiPS3. Phys. Rev. B 106, 174422 (2022).

    Google Scholar 

  35. Gao, B. et al. Spin waves and dirac magnons in a honeycomb-lattice zigzag antiferromagnet \({{\rm{BaNi}}}_{2}{({{\rm{AsO}}}_{4})}_{2}\). Phys. Rev. B 104, 214432 (2021).

    Google Scholar 

  36. Litvin, D. The luttinger-tisza method. Physica 77, 205 (1974).

    Google Scholar 

  37. Paddison, J. A. Scattering signatures of bond-dependent magnetic interactions. Phys. Rev. Lett. 125, 247202 (2020).

    Google Scholar 

  38. Dahlbom, D. et al. Geometric integration of classical spin dynamics via a mean-field schrödinger equation. Phys. Rev. B 106, 054423 (2022).

    Google Scholar 

  39. Yambe, R. & Hayami, S. Skyrmion crystals in centrosymmetric itinerant magnets without horizontal mirror plane. Sci. Rep. 11, 11184 (2021).

    Google Scholar 

  40. Okubo, T., Chung, S. & Kawamura, H. Multiple-q states and the skyrmion lattice of the triangular-lattice heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012).

    Google Scholar 

  41. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007).

    Google Scholar 

  42. Gordon, E. E., Derakhshan, S., Thompson, C. M. & Whangbo, M.-H. Spin-density wave as a superposition of two magnetic states of opposite chirality and its implications. Inorg. Chem. 57, 9782 (2018).

    Google Scholar 

  43. Kenzelmann, M. et al. Field dependence of magnetic ordering in kagomé-staircase compound Ni3V2O8. Phys. Rev. B 74, 014429 (2006).

    Google Scholar 

  44. Niermann, D. et al. Domain dynamics in the multiferroic phase of MnWO4. Phys. Rev. B 89, 134412 (2014).

    Google Scholar 

  45. Granroth, G. E. et al. SEQUOIA: a newly operating chopper spectrometer at the SNS. J. Phys.: Conf. Ser. 251, 012058 (2010).

    Google Scholar 

  46. Arnold, O. et al. Mantid-data analysis and visualization package for neutron scattering and μsr experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 764, 156 (2014).

    Google Scholar 

  47. Ewings, R. et al. Horace : Software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 834, 132 (2016).

    Google Scholar 

  48. Itoh, S. et al. High resolution chopper spectrometer HRC at J - PARC. Nucl. Instrum. Methods Phys. Res. Sect. A Accele. Spectrometers Detect. Assoc. Equip. 631, 90 (2011).

    Google Scholar 

  49. Cao, H. et al. Demand, a dimensional extreme magnetic neutron diffractometer at the high flux isotope reactor. Crystals 9, (2019).

  50. Dahlbom, D. et al. Sunny.jl: A julia package for spin dynamics. arXiv: 2501.13095v2 (2025).

  51. Lane, H. et al. Kernel polynomial method for linear spin wave theory. SciPost Phys. 17, 145 (2024).

    Google Scholar 

Download references

Acknowledgements

The authors thank Cristian Batista and Jong-Seok Lee for their fruitful discussion and constructive comments. The authors also thank Maxim Avdeev for his help with powder neutron diffraction measurement at ECHIDNA, ANSTO. The work at SNU was supported by the Leading Researcher Program of the National Research Foundation of Korea (Grant No. 2020R1A3B2079357) and the National Research Foundation of Korea (Grant No. RS-2020-NR049405). The work of O.V. and M.M. was supported by the U.S. National Science Foundation through Grant Nos. NSF-DMR-1750186 and NSF-DMR-2309083. S.M. acknowledges support from the Center for Nonlinear Studies at Los Alamos National Laboratory. The work of Y.K. and S.-J.K. was supported by the Pioneer Research Center Program through the National Research Foundation of Korea, funded by the Ministry of Science, ICT & Future Planning (NRF-2022M3C1A3091988). Part of this research was conducted at the High-Flux Isotope Reactor and Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. The beam time was allocated to SEQUOIA on proposal numbers IPTS-27591 and 29888. The beam time was allocated to DEMAND on proposal numbers IPTS-33254. Another neutron experiment was performed at the Materials and Life Science Experimental Facility of the J-PARC Center under a user program 2022BU1201. One of the authors (J.-G.P.) acknowledges the hospitality of the Indian Institute of Science, where the manuscript was finalised, and the financial support of the Infosys Foundation.

Author information

Author notes
  1. These authors contributed equally: Chaebin Kim, Olivia Vilella, Youjin Lee.

Authors and Affiliations

  1. Center for Quantum Materials, Seoul National University, Seoul, South Korea

    Chaebin Kim, Youjin Lee, Pyeongjae Park, Yeochan An, Woonghee Cho & Je-Geun Park

  2. Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea

    Chaebin Kim, Youjin Lee, Pyeongjae Park, Yeochan An, Woonghee Cho & Je-Geun Park

  3. School of Physics, Georgia Institute of Technology, Atlanta, GA, USA

    Chaebin Kim, Olivia Vilella & Martin Mourigal

  4. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    Matthew B. Stone, Alexander I. Kolesnikov & Yiqing Hao

  5. Institute for Solid State Physics, The University of Tokyo, Chiba, Japan

    Shinichiro Asai & Takatsugu Masuda

  6. Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan

    Shinichi Itoh

  7. Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA

    Sakib Matin

  8. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

    Sakib Matin

  9. Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Republic of Korea

    Yuna Kim & Sung-Jin Kim

Authors
  1. Chaebin Kim
    View author publications

    Search author on:PubMed Google Scholar

  2. Olivia Vilella
    View author publications

    Search author on:PubMed Google Scholar

  3. Youjin Lee
    View author publications

    Search author on:PubMed Google Scholar

  4. Pyeongjae Park
    View author publications

    Search author on:PubMed Google Scholar

  5. Yeochan An
    View author publications

    Search author on:PubMed Google Scholar

  6. Woonghee Cho
    View author publications

    Search author on:PubMed Google Scholar

  7. Matthew B. Stone
    View author publications

    Search author on:PubMed Google Scholar

  8. Alexander I. Kolesnikov
    View author publications

    Search author on:PubMed Google Scholar

  9. Yiqing Hao
    View author publications

    Search author on:PubMed Google Scholar

  10. Shinichiro Asai
    View author publications

    Search author on:PubMed Google Scholar

  11. Shinichi Itoh
    View author publications

    Search author on:PubMed Google Scholar

  12. Takatsugu Masuda
    View author publications

    Search author on:PubMed Google Scholar

  13. Sakib Matin
    View author publications

    Search author on:PubMed Google Scholar

  14. Yuna Kim
    View author publications

    Search author on:PubMed Google Scholar

  15. Sung-Jin Kim
    View author publications

    Search author on:PubMed Google Scholar

  16. Martin Mourigal
    View author publications

    Search author on:PubMed Google Scholar

  17. Je-Geun Park
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.G.P. initiated and supervised the project. Y.L., Y.K., and S.J.K. grew the single crystal. C.K. aligned the sample for measurements. C.K., O.V., P.P., Y.A., W.C., M.B.S., A.I.K., S.I., S.A., T.M., M.M., and J.G.P. performed the INS measurement. C.K., Y.H. and M.M. performed the single-crystal neutron diffraction measurement. C.K. analyzed the data and performed Landau-Lifshitz dynamics and linear spin-wave calculations. S.M. contributed to the data fitting using the Bayesian optimization. C.K., M.M., and J.G.P. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Martin Mourigal or Je-Geun Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Vilella, O., Lee, Y. et al. Kitaev interaction and proximate higher-order skyrmion crystal in the triangular lattice van der Waals antiferromagnet NiI2. npj Quantum Mater. (2026). https://doi.org/10.1038/s41535-026-00851-1

Download citation

  • Received: 18 May 2025

  • Accepted: 08 January 2026

  • Published: 31 January 2026

  • DOI: https://doi.org/10.1038/s41535-026-00851-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Materials (npj Quantum Mater.)

ISSN 2397-4648 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing