Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum materials
  3. articles
  4. article
Band-selective plasmonic polaron in thermoelectric semimetal Ta2PdSe6 with ultra-high power factor
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Band-selective plasmonic polaron in thermoelectric semimetal Ta2PdSe6 with ultra-high power factor

  • Daiki Ootsuki1,
  • Akitoshi Nakano2 nAff7,
  • Urara Maruoka2,
  • Takumi Hasegawa3,
  • Masashi Arita4,
  • Miho Kitamura5 nAff8,
  • Koji Horiba5 nAff8,
  • Teppei Yoshida6 &
  • …
  • Ichiro Terasaki2 

npj Quantum Materials , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Nanoscience and technology
  • Physics

Abstract

We report the electronic structure of the thermoelectric semimetal Ta2PdSe6 with a large thermoelectric power factor and giant Peltier conductivity by means of angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra reveal the coexistence of a sharp hole band with a light electron mass and a broad electron band with a relatively heavy electron mass, which originate from different quasi-one-dimensional (Q1D) chains in Ta2PdSe6. Moreover, the electron band around the Brillouin-zone (BZ) boundary shows a replica structure with respect to the energy originating from plasmonic polarons due to electron-plasmon interactions. The different scattering effects and interactions in each atomic chain lead to asymmetric transport lifetimes of carriers: a large Seebeck coefficient can be realized even in a semimetal. Our findings pave the way for exploring the thermoelectric materials in previously overlooked semimetals and provide a new platform for low-temperature thermoelectric physics, which has been challenging with semiconductors.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shekhar, C. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645 (2015).

    Google Scholar 

  2. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280 (2015).

    Google Scholar 

  3. Mott, N. F. and Jones, H. The Theory of the Properties of Metals and Alloys (Oxford University Press, Oxford, U.K., 1936).

  4. Cutler, M. & Mott, N. F. Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336 (1969).

    Google Scholar 

  5. Markov, M. et al. Thermoelectric properties of semimetals. Sci. Rep. 8, 9876 (2018).

    Google Scholar 

  6. Markov, M., Rezaei, S. E., Sadeghi, S. N., Esfarjani, K. & Zebarjadi, M. Thermoelectric properties of semimetals. Phys. Rev. Mater. 3, 095401 (2019).

    Google Scholar 

  7. Shimizu, S. et al. Giant thermoelectric power factor in ultrathin FeSe superconductor. Nat. Commun. 10, 825 (2019).

    Google Scholar 

  8. Matsubara, M., Yamamoto, T. & Fukuyama, H. Two-band model with high thermoelectric power factor and its application to FeSe thin film. J. Phys. Soc. Jpn. 92, 104704 (2023).

    Google Scholar 

  9. Nakano, A., Maruoka, U., Kato, F., Taniguchi, H. & Terasaki, I. Room temperature thermoelectric properties of isostructural selenides Ta2PdS6 and Ta2PdSe6. J. Phys. Soc. Jpn. 90, 033702 (2021).

    Google Scholar 

  10. Nakano, A. et al. Correlation between thermopower and carrier mobility in the thermoelectric semimetal Ta2PdSe6. J. Phys.: Energy 3, 044004 (2021).

    Google Scholar 

  11. Nakano, A., Maruoka, U. & Terasaki, I. Correlation between thermopower and carrier mobility in the thermoelectric semimetal Ta2PdSe6. Appl. Phys. Lett. 121, 153903 (2022).

    Google Scholar 

  12. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria, 2002).

  13. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  14. Becke, A. D. & Johnson, E. R. A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006).

    Google Scholar 

  15. Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Google Scholar 

  16. Gonze, X. et al. The Abinit project: impact, environment and recent developments. Comput. Phys. Commun. 248, 107042 (2020).

    Google Scholar 

  17. Romero, A. H. et al. ABINIT: overview and focus on selected capabilities. J. Chem. Phys. 152, 124102 (2020).

    Google Scholar 

  18. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. Lett. 50, 17953 (1994).

    Google Scholar 

  19. Torrent, M., Jollet, F., Bottin, F., Zérah, G. & Gonze, X. Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Comput. Mater. Sci. 42, 337 (2008).

    Google Scholar 

  20. Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997).

    Google Scholar 

  21. Fuchs, M. & Scheffler, M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput. Phys. Commun. 119, 67 (1999).

    Google Scholar 

  22. Yang, H. et al. Pressure-induced superconductivity in quasi-one-dimensional semimetal Ta2PdSe6. Phys. Rev. Mater. 6, 084803 (2022).

    Google Scholar 

  23. Nakano, A. et al. Scattering Engineering for High Power Factor Semimetals Proved by Shubnikov-de Haas Oscillation and Anisotropic Resistivity. Adv. Electron. Mater 11, e00279 (2025).

    Google Scholar 

  24. Wang, Y. et al. Large magnetoresistance and nontrivial Fermi surface topology in quasi-one-dimensional Ta2PdSe6. Appl. Phys. Lett. 124, 203101 (2024).

    Google Scholar 

  25. Yang, L. et al. Quasi-one-dimensional Ta2PdSe6 with strong topological surface states for high-performance and polarization-sensitive terahertz detection. Nano Lett. 25, 7690–7698 (2025).

    Google Scholar 

  26. Kato, F. et al. Enhanced cryogenic thermoelectricity in semimetal Ta2PdSe6 through non-Fermi liquid-like charge and heat transport. Adv. Phys. Res. 3, 2400063 (2024).

    Google Scholar 

  27. Nakano, A. & Terasaki, I. Large Nernst effect in the high-mobility semimetal Ta2PdSe6. J. Phys. Soc. Jpn. 93, 103703 (2024).

    Google Scholar 

  28. Chen, C., Avila, J. osé, Frantzeskakis, E., Levy, A. & Asensio, M. C. Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface. Nat. Commun. 6, 8585 (2015).

    Google Scholar 

  29. Wang, Z. et al. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid. Nat. Mater. 15, 835–839 (2016).

    Google Scholar 

  30. Faeth, B. D. et al. Interfacial electron-phonon coupling constants extracted from intrinsic replica bands in monolayer FeSe/SrTiO3. Phys. Rev. Lett. 127, 016803 (2021).

    Google Scholar 

  31. Li, F. & Sawatzky, G. A. Electron phonon coupling versus photoelectron energy loss at the origin of replica bands in photoemission of FeSe on SrTiO3. Phys. Rev. Lett. 120, 237001 (2018).

    Google Scholar 

  32. Moser, S. et al. Tunable polaronic conduction in anatase TiO. Phys. Rev. Lett. 110, 196403 (2013).

    Google Scholar 

  33. Yukawa, R. et al. Phonon-dressed two-dimensional carriers on the ZnO surface. Phys. Rev. B 94, 165313 (2016).

    Google Scholar 

  34. Cancellieri, C. et al. Polaronic metal state at the LaAlO3/SrTiO3 interface. Nat. Commun. 7, 10386 (2016).

    Google Scholar 

  35. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of TC in FeSe films on SrTiO3. Nature 515, 245–248 (2014).

    Google Scholar 

  36. Zhang, C. et al. Ubiquitous strong electron-phonon coupling at the interface of FeSe/SrTiO3. Nat. Commun. 8, 14468 (2017).

    Google Scholar 

  37. Liu, C. et al. High-order replica bands in monolayer FeSe/SrTiO3 revealed by polarization-dependent photoemission spectroscopy. Nat. Commun. 12, 4573 (2021).

    Google Scholar 

  38. Caruso, F., Lambert, H. & Giustino, F. Band structures of plasmonic polarons. Phys. Rev. Lett. 114, 146404 (2015).

    Google Scholar 

  39. Caruso, F., Verdi, C., Poncé, S. & Giustino, F. Electron-plasmon and electron-phonon satellites in the angle-resolved photoelectron spectra of n-doped anatase TiO2. Phys. Rev. B 97, 165113 (2018).

    Google Scholar 

  40. Riley, J. M. et al. Crossover from lattice to plasmonic polarons of a spin-polarised electron gas in ferromagnetic EuO. Nat. Commun. 9, 2305 (2018).

    Google Scholar 

  41. Caruso, F. et al. Two-dimensional plasmonic polarons in n-doped monolayer MoS2. Phys. Rev. B 103, 205152 (2021).

    Google Scholar 

  42. ren Ulstrup, S. ø et al. Observation of interlayer plasmon polaron in graphene/WS2 heterostructures. Nat. Commun. 15, 3845 (2024).

    Google Scholar 

  43. Nakano, A. et al. Exciton transport in the electron-hole system Ta2NiSe5. J. Phys. Soc. Jpn. 88, 113706 (2019).

    Google Scholar 

  44. Ohta, H. et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129–134 (2007).

    Google Scholar 

  45. Choi, W. S., Ohta, H., Moon, S. J., Lee, Y. S. & Noh, T. W. Dimensional crossover of polaron dynamics in Nb:SrTiO3/SrTiO3 superlattices: possible mechanism of thermopower enhancement. Phys. Rev. B 82, 024301 (2010).

    Google Scholar 

  46. Choi, W. S., Yoo, H. K. & Ohta, H. Polaron transport and thermoelectric behavior in La-Doped SrTiO3 thin films with elemental vacancies. Adv. Funct. Mater. 25, 799–804 (2015).

    Google Scholar 

  47. Zhao, L.-D. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141–144 (2016).

    Google Scholar 

  48. de Cotret, L. P. R. et al. Direct visualization of polaron formation in the thermoelectric SnSe. Proc. Natl. Acad. Sci. USA 116, 450 (2019).

    Google Scholar 

  49. Guster, B., Vasilchenko, V., Azizi, M., Giantomassi, M. & Gonze, X. Large cylindrical polaron in orthorhombic SnSe: a theoretical study. Phys. Rev. Mater. 7, 064604 (2023).

    Google Scholar 

  50. Snyder, G. J., Caillat, T. & Fleurial, J.-P. Thermoelectric, transport, and magnetic properties of the polaron semiconductor FexCr3−xSe4. Phys. Rev. B 62, 10185 (2000).

    Google Scholar 

  51. Mannella, N. et al. Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474–478 (2005).

    Google Scholar 

  52. Mannella, N. et al. Polaron coherence condensation as the mechanism for colossal magnetoresistance in layered manganites. Phys. Rev. B 76, 233102 (2007).

    Google Scholar 

  53. Kitamura, M. et al. Development of a versatile micro-focused angle-resolved photoemission spectroscopy system with Kirkpatrick-Baez mirror optics. Rev. Sci. Instrum. 93, 033906 (2022).

    Google Scholar 

  54. Homma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank H. Fukuyama and M. Matsubara for fruitful discussions, T. Ishida for experimental support, and A. Honma, S. Souma, K. Ozawa, and T. Sato for technical assistance with BL-28A at Photon Factory. The synchrotron radiation experiment was performed with the approval of Photon Factory (Proposal Nos. 2018S2-001, 2019G122, 2021G101, 2021S2-001, 2022G077, and 2024G081) and HSRC (Proposal Nos. 21AG030, 21BG022, 22BG010, and 25BG029). This work was supported by Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI Nos. 17H06136, 21K13878, 21K13882, 23K13059, 24H01621, 25K07184, and 25K07226).

Author information

Author notes
  1. Akitoshi Nakano

    Present address: Department of Applied Physics, Nagoya University, Nagoya, Japan

  2. Miho Kitamura & Koji Horiba

    Present address: NanoTerasu Center, National Institutes for Quantum Science and Technology (QST), Sendai, Miyagi, Japan

Authors and Affiliations

  1. Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan

    Daiki Ootsuki

  2. Department of Physics, Nagoya University, Nagoya, Japan

    Akitoshi Nakano, Urara Maruoka & Ichiro Terasaki

  3. Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Hiroshima, Japan

    Takumi Hasegawa

  4. Research Institute for Synchrotron Radiation Science, Hiroshima University, Higashi-hiroshima, Japan

    Masashi Arita

  5. Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan

    Miho Kitamura & Koji Horiba

  6. Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, Japan

    Teppei Yoshida

Authors
  1. Daiki Ootsuki
    View author publications

    Search author on:PubMed Google Scholar

  2. Akitoshi Nakano
    View author publications

    Search author on:PubMed Google Scholar

  3. Urara Maruoka
    View author publications

    Search author on:PubMed Google Scholar

  4. Takumi Hasegawa
    View author publications

    Search author on:PubMed Google Scholar

  5. Masashi Arita
    View author publications

    Search author on:PubMed Google Scholar

  6. Miho Kitamura
    View author publications

    Search author on:PubMed Google Scholar

  7. Koji Horiba
    View author publications

    Search author on:PubMed Google Scholar

  8. Teppei Yoshida
    View author publications

    Search author on:PubMed Google Scholar

  9. Ichiro Terasaki
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.O., A.N., and I.T. designed the research. D.O. performed the ARPES measurements with support from M.A., M.K., K.H., and T.Y.'s research. A.N., U.M., and I.T. contributed samples. T.H. calculated the phonon density of states. D.O. analyzed the data and wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Daiki Ootsuki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ootsuki, D., Nakano, A., Maruoka, U. et al. Band-selective plasmonic polaron in thermoelectric semimetal Ta2PdSe6 with ultra-high power factor. npj Quantum Mater. (2026). https://doi.org/10.1038/s41535-026-00858-8

Download citation

  • Received: 14 October 2025

  • Accepted: 25 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41535-026-00858-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Frontiers of Thermoelectrics: Transport Physics and Beyond

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Materials (npj Quantum Mater.)

ISSN 2397-4648 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing