Table 2 Predictive performance of chemometric models with variable selection algorithms for peroxide and iodine value prediction in crude palm oil
From: Machine learning-assisted Raman spectroscopy for non-destructive analysis of crude palm oil quality
Parameter | Models | PCs | Number of variables | Calibration set n = 133 | Prediction set n = 67 | RPD | ||
|---|---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | |||||
Peroxide value (meq O2/kg) | PLS | 6 | 1024 | 0.9597 | 0.5154 | 0.9481 | 0.6367 | 4.8935 |
CARS-PLS | 9 | 104 | 0.9794 | 0.4701 | 0.9557 | 0.5649 | 2.3079 | |
UVE-PLS | 6 | 66 | 0.9705 | 0.5104 | 0.9613 | 0.5186 | 3.6138 | |
GA-PLS | 6 | 148 | 0.9641 | 0.5603 | 0.9471 | 0.6824 | 3.0003 | |
Iodine value (g I2/100 g) | PLS | 6 | 1024 | 0.9692 | 0.3565 | 0.9400 | 0.5002 | 3.9139 |
CARS-PLS | 8 | 91 | 0.9687 | 0.3161 | 0.9483 | 0.5340 | 2.3208 | |
UVE-PLS | 7 | 45 | 0.9724 | 0.5266 | 0.9650 | 0.6203 | 3.7535 | |
GA-PLS | 6 | 140 | 0.9647 | 0.5945 | 0.9327 | 0.8678 | 2.7623 | |