Abstract
Quinoa is globally recognised for its nutritional value, and its production has recently expanded worldwide. However, Quinoa Real (Royal Quinoa), a landrace group grown exclusively in the Intersalar zone of Bolivia, stands out for its grain quality and adaptation to extreme environments, such as high altitude, high salinity, intense UV radiation, aridity, and temperature fluctuations. This study compares the nutritional composition of 13 well-established commercial quinoa samples from 9 countries, including Quinoa Real white, red, and black. Analyses covered granulometry, proximate composition, fatty acid and amino acid profiles, vitamins, and minerals. Multivariate analyses (PCA and nMDS) revealed clear compositional distinctions for Quinoa Real, including higher levels of dietary fibre, ash, phytosterols, and essential minerals. It also exhibits a more favourable fatty-acid profile, higher levels of several vitamins, and a well-balanced essential amino acid profile. These results show that Quinoa Real is not only a nutritional outlier but also a valuable agrobiodiversity resource with implications for food security, functional foods, and sustainable production in the face of global dietary and environmental challenges.
Similar content being viewed by others
Data Availability
Raw data will be made available on request to the corresponding authors.
References
Bazile, D., Fuentes, F. & Mujica, A. in Quinoa: Botany, Production and Uses (eds Atul Bhargava & Shilpi Srivastava) Ch. 2, 16–34 (CABI, 2013).
Miller, M. J. et al. Quinoa, potatoes, and llamas fueled emergent social complexity in the Lake Titicaca Basin of the Andes. Proc. Natl. Acad. Sci. 118, e2113395118 (2021).
Encina-Zelada, C. et al. Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by Near-Infrared Transmission spectroscopy. LWT-Food Sci. Technol. 79, 126–134 (2017).
Navruz-Varli, S. & Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. cereal Sci. 69, 371–376 (2016).
Malalgoda, M., Ohm, J.-B. & Simsek, S. Celiac antigenicity of ancient wheat species. Foods 8, 675 (2019).
Burrieza, H. P. et al. (2019). Food Chem. 325, 126934 (2020).
Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K. & Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 119, 770–778 (2010).
Alamri, E., Amany, B. & Bayomy, H. Quinoa seeds (Chenopodium quinoa): Nutritional value and potential biological effects on hyperglycemic rats. J. King Saud. Univ. -Sci. 35, 102427 (2023).
Burrieza, H. P., Rizzo, A. J., Vale, E. M., Silveira, V. & Maldonado, S. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chem. 293, 299–306 (2019).
Pellegrini, M. et al. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind. crops products 111, 38–46 (2018).
Tichy, H.-V., Bruhs, A. & Palisch, A. Development of Real-time polymerase chain reaction systems for the detection of so-called “superfoods” chia and quinoa in commercial food products. J. Agric. Food Chem. 68, 14334–14342 (2020).
López-Cervantes, J., Sánchez-Machado, D., de la Mora-López, D. S. & Sanches-Silva, A. Quinoa (Chenopodium quinoa Willd.): exploring a superfood from Andean indigenous cultures with potential to reduce cardiovascular disease (CVD) risk markers. Curr. Mol. Pharmacol. 14, 925–934 (2021).
Erbersdobler, H., Barth, C. & Jahreis, G. Legumes in human nutrition. Nutrient content and protein quality of pulses. Ernahr. Umsch. 64, 134–139 (2017).
Pathan, S., Ndunguru, G., Clark, K. & Ayele, A. G. Yield and Nutritional Responses of Quinoa (Chenopodium Quinoa Willd.) Genotypes to Irrigated, Rainfed, and Drought-Stress Environments. Front. Sustain. Food Syst. 7, https://doi.org/10.3389/fsufs.2023.1242187 (2023).
Rana, G. K., Singh, N. & Deshmukh, K. K. Quinoa: New Light on an Old Superfood-a Review. Agricultural Reviews 40, https://doi.org/10.18805/ag.r-1927 (2019).
Rożnowski, J. & Przetaczek-Rożnowska, I. Physicochemical Properties of Flour and Starch Obtained From Various Quinoa Varieties. Eng. Sci. Technol. 2023, 1–13 (2023).
Wu, G., Morris, C. F. & Murphy, K. M. Evaluation of Texture Differences Among Varieties of Cooked Quinoa. J. Food Sci. 79, https://doi.org/10.1111/1750-3841.12672 (2014).
Razzeto, G. S. et al. Evaluation and Comparative Study of the Nutritional Profile and Antioxidant Potential of New Quinoa Varieties. Asian J. Agric. Horticult. Res. 1–11, https://doi.org/10.9734/ajahr/2019/v3i330002 (2019).
Angeli, V. et al. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 9, 216 (2020).
Bazile, D., Jacobsen, S.-E. & Verniau, A. The global expansion of quinoa: trends and limits. Front. plant Sci. 7, 184730 (2016).
Pedrali, L. et al. The quinoa variety influences the nutritional and antioxidant profile rather than the geographic factors. Food Chem. 402, 133531 (2023).
FAO, W. H. O., & UNU Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation: World Health Organization. (2007).
Fonseca-Guerra, I. R., Beltrán Pineda, M. E. & Benavides Rozo, M. E. Characterization of Alternaria Alternata and Alternaria Scrophulariae Brown Spot in Colombian Quinoa (Chenopodium Quinoa). J. Fungi 9, 947 (2023).
Mu, H. et al. Research progress of quinoa seeds (Chenopodium quinoa Wild.): Nutritional components, technological treatment, and application. Foods 12, 2087 (2023).
Präger, A., Munz, S., Nkebiwe, P. M., Mast, B. & Graeff-Hönninger, S. Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in Southwestern Germany. Agronomy 8, 197 (2018).
Bonifacio, A., Aroni, G. & Villca, M. Cultivos de quinua en Bolivia (ed Proimpa) (Proimpa, Cochabamba, Bolivia, (2012).
Ballester-Sánchez, J., Yalcin, E., Fernández-Espinar, M. T. & Haros, C. M. Rheological and thermal properties of royal quinoa and wheat flour blends for breadmaking. Eur. Food Res. Technol. 245, 1571–1582 (2019).
Aluwi, N. A. et al. Impacts of scarification and degermination on the expansion characteristics of select quinoa varieties during extrusion processing. J. food Sci. 81, E2939–E2949 (2016).
Cusicanqui, J. et al. Economic Assessment at Farm Level of the Implementation of Deficit Irrigation for Quinoa Production in the Southern Bolivian Altiplano. Span. J. Agric. Res. 11, 894–907 (2013).
Cárdenas-Castillo, J. E., Delatorre-Herrera, J., Bascuñán-Godoy, L. & Rodriguez, J. P. Quinoa (Chenopodium quinoa Wild.) seed yield and efficiency in soils deficient of nitrogen in the Bolivian altiplano: an analytical review. Plants 10, 2479 (2021).
Olivares, T. D. Quinua export. Producto milenario, mercado e instituciones en el altiplano boliviano. Temas Sociales 45, 10–35 (2019).
Bonifacio, A. Improvement of Quinoa (Chenopodium quinoa Willd.) and Qañawa (Chenopodium pallidicaule Aellen) in the context of climate change in the high Andes. Cienc. e investigación agraria: Rev. Latinoam. de. Cienc. de. la agricultura 46, 113–124 (2019).
CODEX ALIMENTARIUS COMMISSION. Compilation of Comments Submitted in Reply to CL 2020/25-CPL: Analysis of Responses to CL 2019/92-CPL: Grain Size in the Standard for Quinoa. FAO/WHO. (2020)
Linares-Pastén, J. A., Karlsson, E. N. & Nilsson, L. Chapter 3. Analysis of food constituents: bioactive carbohydrates, in Sustainable Analytical Techniques in Food Science 69–105 (Elsevier, 2025).
Abugoch James, L. E. Chapter 1. Quinoa (Chenopodium quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties, in Advances in Food and Nutrition Research Vol. 58 1–31 (Academic Press, 2009).
Scholz, B., Guth, S., Engel, K. H. & Steinberg, P. Phytosterol oxidation products in enriched foods: Occurrence, exposure, and biological effects. Mol. Nutr. food Res. 59, 1339–1352 (2015).
Ibieta, G. a., Ortiz-Sempértegui, J., Peñarrieta, J. M. & Linares-Pastén, J. A. Enhancing the functional value of Andean foodplants: Enzymatic production of γ-aminobutyric acid from tarwi, cañihua and quinoa real seeds’ proteins. LWT - Food Sci. Technol. 220, 117564 (2025).
Craine, E. B. & Murphy, K. M. Seed composition and amino acid profiles for quinoa grown in Washington State. Front. Nutr. 7, 126 (2020).
Nowak, V., Du, J. & Charrondière, U. R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 193, 47–54 (2016).
FAO, WHO & UNU. Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. (World Health Organization, 2007).
Matías, J. et al. Changes in quinoa seed fatty acid profile under heat stress field conditions. Front. Nutr. 9, 820010 (2022).
Graf, B. L. et al. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd). Compr. Rev. food Sci. food Saf 14, 431–445 (2015).
Watanabe, Y. & Tatsuno, I. Prevention of cardiovascular events with omega-3 polyunsaturated fatty acids and the mechanism involved. J. Atherosclerosis Thrombosis 27, 183–198 (2020).
Panda, C., Varadharaj, S. & Voruganti, V. S. PUFA, genotypes and risk for cardiovascular disease. Prostaglandins, Leukotrienes Essent. Fat. Acids 176, 102377 (2022).
Ruales, J. & Nair, B. M. Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chem. 48, 131–136 (1993).
Filho, A. M. M. et al. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 57, 1618–1630 (2017).
Kozioł, M. J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd). J. Food Composition Anal 5, 35–68 (1992).
Pathan, S. & Siddiqui, R. A. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients 14, 558 (2022).
Nascimento, A. C. et al. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chem. 148, 420–426 (2014).
Bolaños, D., Marchevsky, E. J. & Camiña, J. M. Elemental analysis of amaranth, chia, sesame, linen, and quinoa seeds by ICP-OES: assessment of classification by chemometrics. Food Anal. methods 9, 477–484 (2016).
Shaheen, S. M., Tsadilas, C. D. & Rinklebe, J. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv. Colloid Interface Sci. 201, 43–56 (2013).
Oksanen, J. et al. Community ecology package.ackage ‘vegan’ (2010).
R. Core Team: A language and environment for statistical computing (2013).
Aloisi, I. et al. New insight into quinoa seed quality under salinity: Changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts. Front. Plant Sci. 7, 656 (2016).
Reguera, M. et al. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 6, e4442 (2018).
Tovar, J. C. et al. Heat stress changes mineral nutrient concentrations in Chenopodium quinoa seed. Plant Direct 6, e384 (2022).
Gil-Ramirez, A. et al. Integrated process for sequential extraction of saponins, xylan and cellulose from quinoa stalks (Chenopodium quinoa Willd). Ind. Crops Products 121, 54–65 (2018).
Martin, F. & Campos-Giménez, E. Pantothenic acid (Vitamin B5) in infant formula and adult/pediatric nutritional formula by ultra-high pressure liquid chromatography/tandem mass spectrometry method: collaborative study, final action 2012.16. J. AOAC Int. 98, 1697–1701 (2015).
Campos-Giménez, E. et al. Determination of vitamin B12 in food products by liquid chromatography/UV detection with immunoaffinity extraction: single-laboratory validation. J. AOAC Int. 91, 786–793 (2008).
González, J. A., Eisa, S. S., Hussin, S. A. & Prado, F. E. in Quinoa: Improvement and sustainable production (eds Kevin Murphy & Janet Mattanguihan) Ch. 1, 1–18 (John Wiley & Sons, Inc., 2015).
Pathak, M. K. & Patel, T. Quinoa: A History of Ancient Grains and Modern Diets. Agriculture Food.: E-Newsl. 5, 570–572 (2023).
Tapia, M. Historia, distribución geográfica, actual producción y usos: La quinua.(En línea). Rev. Ambient. 99, 104–199 (2012).
Tapia, M. et al. Quinua y la kañiwa : cultivos andinos. (eds centro internacional de investigaciones para el desarrollo (CIID) & instituto interamericano de ciencias agricolas (IICA) CIID and IICA, Bogotá, Colombia, (1979).
Schlick, G. & Bubenheim, D. L. Quinoa. An emerging new crop with potential for CELSS, (1993).
Jarvis, D. E. et al. The genome of Chenopodium quinoa. Nature 542, 307–312 (2017).
Alandia, G., Rodriguez, J., Jacobsen, S.-E., Bazile, D. & Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Security 26, 100429 (2020).
Fuentes, F., Bazile, D., Bhargava, A. & Martinez, E. A. Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J. Agric. Sci. 150, 702–716 (2012).
Acknowledgements
The Swedish International Development Cooperation Agency – Sida, and Swisscontact, a Swiss-based international development organization in Bolivia, founded this work. The APC was funded by Lund University.
Funding
Open access funding provided by Lund University.
Author information
Authors and Affiliations
Contributions
Conceptualisation: J-M.P. and J.A.L-P. Writing – original draft: J-M.P. and J.A.L-P. Validation, Methodology: E.L., J-M.P. and J.A.L-P. Investigation: E.L., J-M.P. and J.A.L-P. Formal analysis: E.L., J-M.P. and J.A.L-P. Funding acquisition: J-M.P. and J.A.L-P. Project administration: J-M.P. and J.A.L-P. All authors reviewed the manuscript
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Peñarrieta, J.M., Loayza, E. & Linares-Pastén, J.A. Nutritional distinction of Bolivian Quinoa Real compared to global varieties. npj Sci Food (2026). https://doi.org/10.1038/s41538-026-00735-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41538-026-00735-5


