Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Science of Food
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj science of food
  3. articles
  4. article
Nutritional distinction of Bolivian Quinoa Real compared to global varieties
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Nutritional distinction of Bolivian Quinoa Real compared to global varieties

  • J. Mauricio Peñarrieta1,
  • Erick Loayza1,2,3 &
  • Javier A. Linares-Pastén4 

npj Science of Food , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Plant sciences

Abstract

Quinoa is globally recognised for its nutritional value, and its production has recently expanded worldwide. However, Quinoa Real (Royal Quinoa), a landrace group grown exclusively in the Intersalar zone of Bolivia, stands out for its grain quality and adaptation to extreme environments, such as high altitude, high salinity, intense UV radiation, aridity, and temperature fluctuations. This study compares the nutritional composition of 13 well-established commercial quinoa samples from 9 countries, including Quinoa Real white, red, and black. Analyses covered granulometry, proximate composition, fatty acid and amino acid profiles, vitamins, and minerals. Multivariate analyses (PCA and nMDS) revealed clear compositional distinctions for Quinoa Real, including higher levels of dietary fibre, ash, phytosterols, and essential minerals. It also exhibits a more favourable fatty-acid profile, higher levels of several vitamins, and a well-balanced essential amino acid profile. These results show that Quinoa Real is not only a nutritional outlier but also a valuable agrobiodiversity resource with implications for food security, functional foods, and sustainable production in the face of global dietary and environmental challenges.

Similar content being viewed by others

Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions

Article Open access 27 March 2023

Mining genomic regions associated with agronomic and biochemical traits in quinoa through GWAS

Article Open access 22 April 2024

Yield, growth development and grain characteristics of seven Quinoa (Chenopodium quinoa Willd.) genotypes grown in open-field production systems under hot-arid climatic conditions

Article Open access 03 February 2023

Data Availability

Raw data will be made available on request to the corresponding authors.

References

  1. Bazile, D., Fuentes, F. & Mujica, A. in Quinoa: Botany, Production and Uses (eds Atul Bhargava & Shilpi Srivastava) Ch. 2, 16–34 (CABI, 2013).

  2. Miller, M. J. et al. Quinoa, potatoes, and llamas fueled emergent social complexity in the Lake Titicaca Basin of the Andes. Proc. Natl. Acad. Sci. 118, e2113395118 (2021).

    Google Scholar 

  3. Encina-Zelada, C. et al. Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by Near-Infrared Transmission spectroscopy. LWT-Food Sci. Technol. 79, 126–134 (2017).

    Google Scholar 

  4. Navruz-Varli, S. & Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. cereal Sci. 69, 371–376 (2016).

    Google Scholar 

  5. Malalgoda, M., Ohm, J.-B. & Simsek, S. Celiac antigenicity of ancient wheat species. Foods 8, 675 (2019).

    Google Scholar 

  6. Burrieza, H. P. et al. (2019). Food Chem. 325, 126934 (2020).

  7. Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K. & Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 119, 770–778 (2010).

    Google Scholar 

  8. Alamri, E., Amany, B. & Bayomy, H. Quinoa seeds (Chenopodium quinoa): Nutritional value and potential biological effects on hyperglycemic rats. J. King Saud. Univ. -Sci. 35, 102427 (2023).

    Google Scholar 

  9. Burrieza, H. P., Rizzo, A. J., Vale, E. M., Silveira, V. & Maldonado, S. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chem. 293, 299–306 (2019).

    Google Scholar 

  10. Pellegrini, M. et al. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind. crops products 111, 38–46 (2018).

    Google Scholar 

  11. Tichy, H.-V., Bruhs, A. & Palisch, A. Development of Real-time polymerase chain reaction systems for the detection of so-called “superfoods” chia and quinoa in commercial food products. J. Agric. Food Chem. 68, 14334–14342 (2020).

    Google Scholar 

  12. López-Cervantes, J., Sánchez-Machado, D., de la Mora-López, D. S. & Sanches-Silva, A. Quinoa (Chenopodium quinoa Willd.): exploring a superfood from Andean indigenous cultures with potential to reduce cardiovascular disease (CVD) risk markers. Curr. Mol. Pharmacol. 14, 925–934 (2021).

    Google Scholar 

  13. Erbersdobler, H., Barth, C. & Jahreis, G. Legumes in human nutrition. Nutrient content and protein quality of pulses. Ernahr. Umsch. 64, 134–139 (2017).

    Google Scholar 

  14. Pathan, S., Ndunguru, G., Clark, K. & Ayele, A. G. Yield and Nutritional Responses of Quinoa (Chenopodium Quinoa Willd.) Genotypes to Irrigated, Rainfed, and Drought-Stress Environments. Front. Sustain. Food Syst. 7, https://doi.org/10.3389/fsufs.2023.1242187 (2023).

  15. Rana, G. K., Singh, N. & Deshmukh, K. K. Quinoa: New Light on an Old Superfood-a Review. Agricultural Reviews 40, https://doi.org/10.18805/ag.r-1927 (2019).

  16. Rożnowski, J. & Przetaczek-Rożnowska, I. Physicochemical Properties of Flour and Starch Obtained From Various Quinoa Varieties. Eng. Sci. Technol. 2023, 1–13 (2023).

    Google Scholar 

  17. Wu, G., Morris, C. F. & Murphy, K. M. Evaluation of Texture Differences Among Varieties of Cooked Quinoa. J. Food Sci. 79, https://doi.org/10.1111/1750-3841.12672 (2014).

  18. Razzeto, G. S. et al. Evaluation and Comparative Study of the Nutritional Profile and Antioxidant Potential of New Quinoa Varieties. Asian J. Agric. Horticult. Res. 1–11, https://doi.org/10.9734/ajahr/2019/v3i330002 (2019).

  19. Angeli, V. et al. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 9, 216 (2020).

    Google Scholar 

  20. Bazile, D., Jacobsen, S.-E. & Verniau, A. The global expansion of quinoa: trends and limits. Front. plant Sci. 7, 184730 (2016).

    Google Scholar 

  21. Pedrali, L. et al. The quinoa variety influences the nutritional and antioxidant profile rather than the geographic factors. Food Chem. 402, 133531 (2023).

    Google Scholar 

  22. FAO, W. H. O., & UNU Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation: World Health Organization. (2007).

  23. Fonseca-Guerra, I. R., Beltrán Pineda, M. E. & Benavides Rozo, M. E. Characterization of Alternaria Alternata and Alternaria Scrophulariae Brown Spot in Colombian Quinoa (Chenopodium Quinoa). J. Fungi 9, 947 (2023).

    Google Scholar 

  24. Mu, H. et al. Research progress of quinoa seeds (Chenopodium quinoa Wild.): Nutritional components, technological treatment, and application. Foods 12, 2087 (2023).

    Google Scholar 

  25. Präger, A., Munz, S., Nkebiwe, P. M., Mast, B. & Graeff-Hönninger, S. Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in Southwestern Germany. Agronomy 8, 197 (2018).

    Google Scholar 

  26. Bonifacio, A., Aroni, G. & Villca, M. Cultivos de quinua en Bolivia (ed Proimpa) (Proimpa, Cochabamba, Bolivia, (2012).

  27. Ballester-Sánchez, J., Yalcin, E., Fernández-Espinar, M. T. & Haros, C. M. Rheological and thermal properties of royal quinoa and wheat flour blends for breadmaking. Eur. Food Res. Technol. 245, 1571–1582 (2019).

    Google Scholar 

  28. Aluwi, N. A. et al. Impacts of scarification and degermination on the expansion characteristics of select quinoa varieties during extrusion processing. J. food Sci. 81, E2939–E2949 (2016).

    Google Scholar 

  29. Cusicanqui, J. et al. Economic Assessment at Farm Level of the Implementation of Deficit Irrigation for Quinoa Production in the Southern Bolivian Altiplano. Span. J. Agric. Res. 11, 894–907 (2013).

    Google Scholar 

  30. Cárdenas-Castillo, J. E., Delatorre-Herrera, J., Bascuñán-Godoy, L. & Rodriguez, J. P. Quinoa (Chenopodium quinoa Wild.) seed yield and efficiency in soils deficient of nitrogen in the Bolivian altiplano: an analytical review. Plants 10, 2479 (2021).

    Google Scholar 

  31. Olivares, T. D. Quinua export. Producto milenario, mercado e instituciones en el altiplano boliviano. Temas Sociales 45, 10–35 (2019).

    Google Scholar 

  32. Bonifacio, A. Improvement of Quinoa (Chenopodium quinoa Willd.) and Qañawa (Chenopodium pallidicaule Aellen) in the context of climate change in the high Andes. Cienc. e investigación agraria: Rev. Latinoam. de. Cienc. de. la agricultura 46, 113–124 (2019).

    Google Scholar 

  33. CODEX ALIMENTARIUS COMMISSION. Compilation of Comments Submitted in Reply to CL 2020/25-CPL: Analysis of Responses to CL 2019/92-CPL: Grain Size in the Standard for Quinoa. FAO/WHO. (2020)

  34. Linares-Pastén, J. A., Karlsson, E. N. & Nilsson, L. Chapter 3. Analysis of food constituents: bioactive carbohydrates, in Sustainable Analytical Techniques in Food Science 69–105 (Elsevier, 2025).

  35. Abugoch James, L. E. Chapter 1. Quinoa (Chenopodium quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties, in Advances in Food and Nutrition Research Vol. 58 1–31 (Academic Press, 2009).

  36. Scholz, B., Guth, S., Engel, K. H. & Steinberg, P. Phytosterol oxidation products in enriched foods: Occurrence, exposure, and biological effects. Mol. Nutr. food Res. 59, 1339–1352 (2015).

    Google Scholar 

  37. Ibieta, G. a., Ortiz-Sempértegui, J., Peñarrieta, J. M. & Linares-Pastén, J. A. Enhancing the functional value of Andean foodplants: Enzymatic production of γ-aminobutyric acid from tarwi, cañihua and quinoa real seeds’ proteins. LWT - Food Sci. Technol. 220, 117564 (2025).

    Google Scholar 

  38. Craine, E. B. & Murphy, K. M. Seed composition and amino acid profiles for quinoa grown in Washington State. Front. Nutr. 7, 126 (2020).

    Google Scholar 

  39. Nowak, V., Du, J. & Charrondière, U. R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 193, 47–54 (2016).

    Google Scholar 

  40. FAO, WHO & UNU. Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. (World Health Organization, 2007).

  41. Matías, J. et al. Changes in quinoa seed fatty acid profile under heat stress field conditions. Front. Nutr. 9, 820010 (2022).

    Google Scholar 

  42. Graf, B. L. et al. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd). Compr. Rev. food Sci. food Saf 14, 431–445 (2015).

    Google Scholar 

  43. Watanabe, Y. & Tatsuno, I. Prevention of cardiovascular events with omega-3 polyunsaturated fatty acids and the mechanism involved. J. Atherosclerosis Thrombosis 27, 183–198 (2020).

    Google Scholar 

  44. Panda, C., Varadharaj, S. & Voruganti, V. S. PUFA, genotypes and risk for cardiovascular disease. Prostaglandins, Leukotrienes Essent. Fat. Acids 176, 102377 (2022).

    Google Scholar 

  45. Ruales, J. & Nair, B. M. Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chem. 48, 131–136 (1993).

    Google Scholar 

  46. Filho, A. M. M. et al. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 57, 1618–1630 (2017).

    Google Scholar 

  47. Kozioł, M. J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd). J. Food Composition Anal 5, 35–68 (1992).

    Google Scholar 

  48. Pathan, S. & Siddiqui, R. A. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients 14, 558 (2022).

    Google Scholar 

  49. Nascimento, A. C. et al. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chem. 148, 420–426 (2014).

    Google Scholar 

  50. Bolaños, D., Marchevsky, E. J. & Camiña, J. M. Elemental analysis of amaranth, chia, sesame, linen, and quinoa seeds by ICP-OES: assessment of classification by chemometrics. Food Anal. methods 9, 477–484 (2016).

    Google Scholar 

  51. Shaheen, S. M., Tsadilas, C. D. & Rinklebe, J. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv. Colloid Interface Sci. 201, 43–56 (2013).

    Google Scholar 

  52. Oksanen, J. et al. Community ecology package.ackage ‘vegan’ (2010).

  53. R. Core Team: A language and environment for statistical computing (2013).

  54. Aloisi, I. et al. New insight into quinoa seed quality under salinity: Changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts. Front. Plant Sci. 7, 656 (2016).

    Google Scholar 

  55. Reguera, M. et al. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 6, e4442 (2018).

    Google Scholar 

  56. Tovar, J. C. et al. Heat stress changes mineral nutrient concentrations in Chenopodium quinoa seed. Plant Direct 6, e384 (2022).

    Google Scholar 

  57. Gil-Ramirez, A. et al. Integrated process for sequential extraction of saponins, xylan and cellulose from quinoa stalks (Chenopodium quinoa Willd). Ind. Crops Products 121, 54–65 (2018).

    Google Scholar 

  58. Martin, F. & Campos-Giménez, E. Pantothenic acid (Vitamin B5) in infant formula and adult/pediatric nutritional formula by ultra-high pressure liquid chromatography/tandem mass spectrometry method: collaborative study, final action 2012.16. J. AOAC Int. 98, 1697–1701 (2015).

    Google Scholar 

  59. Campos-Giménez, E. et al. Determination of vitamin B12 in food products by liquid chromatography/UV detection with immunoaffinity extraction: single-laboratory validation. J. AOAC Int. 91, 786–793 (2008).

    Google Scholar 

  60. González, J. A., Eisa, S. S., Hussin, S. A. & Prado, F. E. in Quinoa: Improvement and sustainable production (eds Kevin Murphy & Janet Mattanguihan) Ch. 1, 1–18 (John Wiley & Sons, Inc., 2015).

  61. Pathak, M. K. & Patel, T. Quinoa: A History of Ancient Grains and Modern Diets. Agriculture Food.: E-Newsl. 5, 570–572 (2023).

    Google Scholar 

  62. Tapia, M. Historia, distribución geográfica, actual producción y usos: La quinua.(En línea). Rev. Ambient. 99, 104–199 (2012).

    Google Scholar 

  63. Tapia, M. et al. Quinua y la kañiwa : cultivos andinos. (eds centro internacional de investigaciones para el desarrollo (CIID) & instituto interamericano de ciencias agricolas (IICA) CIID and IICA, Bogotá, Colombia, (1979).

  64. Schlick, G. & Bubenheim, D. L. Quinoa. An emerging new crop with potential for CELSS, (1993).

  65. Jarvis, D. E. et al. The genome of Chenopodium quinoa. Nature 542, 307–312 (2017).

    Google Scholar 

  66. Alandia, G., Rodriguez, J., Jacobsen, S.-E., Bazile, D. & Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Security 26, 100429 (2020).

    Google Scholar 

  67. Fuentes, F., Bazile, D., Bhargava, A. & Martinez, E. A. Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J. Agric. Sci. 150, 702–716 (2012).

    Google Scholar 

Download references

Acknowledgements

The Swedish International Development Cooperation Agency – Sida, and Swisscontact, a Swiss-based international development organization in Bolivia, founded this work. The APC was funded by Lund University.

Funding

Open access funding provided by Lund University.

Author information

Authors and Affiliations

  1. Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220, La Paz, Bolivia

    J. Mauricio Peñarrieta & Erick Loayza

  2. Unidad de Ecología Acuática, Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia

    Erick Loayza

  3. Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium

    Erick Loayza

  4. Biotechnology and Applied Microbiology, Department of Process and Life Sciences Engineering. Faculty of Engineering LTH, Lund University, Lund, Sweden

    Javier A. Linares-Pastén

Authors
  1. J. Mauricio Peñarrieta
    View author publications

    Search author on:PubMed Google Scholar

  2. Erick Loayza
    View author publications

    Search author on:PubMed Google Scholar

  3. Javier A. Linares-Pastén
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualisation: J-M.P. and J.A.L-P. Writing – original draft: J-M.P. and J.A.L-P. Validation, Methodology: E.L., J-M.P. and J.A.L-P. Investigation: E.L., J-M.P. and J.A.L-P. Formal analysis: E.L., J-M.P. and J.A.L-P. Funding acquisition: J-M.P. and J.A.L-P. Project administration: J-M.P. and J.A.L-P. All authors reviewed the manuscript

Corresponding authors

Correspondence to J. Mauricio Peñarrieta or Javier A. Linares-Pastén.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peñarrieta, J.M., Loayza, E. & Linares-Pastén, J.A. Nutritional distinction of Bolivian Quinoa Real compared to global varieties. npj Sci Food (2026). https://doi.org/10.1038/s41538-026-00735-5

Download citation

  • Received: 19 September 2025

  • Accepted: 23 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s41538-026-00735-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the Partner
  • 5 questions with our new co-Editor-in-Chief

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Science of Food (npj Sci Food)

ISSN 2396-8370 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing