Table 1 The key parameters, WC, QSPE, and CF of CCGT plant.

From: A thermodynamic platform for evaluating the energy efficiency of combined power generation and desalination plants

Components of hybrid CCGT plant with desalination

Process-average temperatures

Actual work (Wa) or heat input (QH or Qa)

(MW)

High-temperature reservoir, TH (K)

Low-temperature reservoir, TL (K)

Gas Turbines (GT)

mg = mass flowrate of combustion gases (kg/s)

Cp = specific heat of gases (J/kg.K)

Eff_GT = efficiency of GT (-)

1750

911

QH = 2000 (input energy to CCGT)

WC, GT = QH*(1 – TL/TH)

Wa, GT = mg*Cp*(Tin − Tout)*eff_GT

HRSG (air side)

mexh = combustion products flowrate = 2002.5 kg/s

Cpexh = specific heat of exhaust

 = 1.005(J/kg.K)mexh 

 = combustion products flowrate

 = 2002.5 kg/s

 Cpexh = specific heat of exhaust

 = 1.005(J/kg.K)

911

370

QHRSG, airside = mexh(Cpexh)·(TH − TL)HRSC

HRSG (steam side)

Effectiveness (EHRSG = 0.862),

Mass flowrate of steam = mS (kg/s)

Actual work = Wa (MW)

hin

(kJ/kg)

hout

(kJ/kg)

mS = (QHRSG, air side)*(EHRSG)/ (hfg)

Wa = mS*(hin – hout)

Steam Turbines (bb = before bled steam,

ab = after bled steam

High pressure (HP)

3514

3360

Wa, HP = ms,HP*(hin – hout)

Intermediate pressure (IP with reheat)

3600

3490

Before bled steam to TVC (vacuum)

3490

3380

Wa, IP = ms,IP*(hin – hout)

Low pressure (LP)

3380

3090

Wa, LP = ms,LP,bb*(hin – hout)bb + ms,LP,ab*(hin – hout)ab

3090

2590

Total Wa, ST

Wa, ST = (Wa, HP + Wa, IP + Wa, LP)

The work-driven turbines (GT and ST), the total consumption of standard primary energy (QSPE) is (1159.64 + 752.20) = 1911.84 MW (57.98% of GT + 37.61% of ST = 95.6% of the total QSPE supplied by the fossil fuel)

The actual output in electricity (Wa) is (765.48 + 331.79) = 1097.27 MWelec., which the difference between the Carnot and actual work are the losses incurred in the turbines

The conversion factor for work heat engine is defined as the ratio of QSPE to Wa, where the latter is the derived electricity that is normally measured by users, either in kWelec or kWhelec/m3. Note that the 1/CF differs from the first law efficiency as the apportioned QSPE for electricity generation is invoked, not the Qinput to CCGT

Actual electricity output is Wa,

standard primary energy consumption, QSPE.

The conversion factor of individual turbine is (CFelec) \(= \left( {\frac{{Q_{{\mathrm{SPE}}}}}{{W_{\mathrm{a}}}}} \right)\)

As the electricity are combined from GT and ST, the weighted CF is

CFelec, weighted = \(\left( {\frac{{Q_{{\mathrm{SPE,GT}}}, + Q_{{\mathrm{SPE}},\,{\mathrm{ST}}}}}{{W_{{\mathrm{a,GT}}} + W_{{\mathrm{a,ST}}}}}} \right)\)

In a heat-driven desalination plant, low-pressure (LP) bled steam from LP-turbines is utilized as a heat source. Since MED, MED-TVC, HT-MED, and MEDAD are operating at different temperatures, hence separate CFth are calculated as shown below

MED-TVC: To = 303 K, TH = 403 K, corresponding CFth = 0.299

MSF: To = 303 K, TH = 383 K, corresponding CFth = 0.252

MED: To = 303 K, TH = 338 K, corresponding CFth = 0.125

MEDAD and DCSEC cycles: To = 303 K, TH = 333 K, corresponding CFth = 0.109

Actual heat input, Qa

The conversion factor for the thermally driven process is (CFth) \(= \left( {\frac{{Q_{{\mathrm{SPE}}}}}{{Q_{\mathrm{a}}}}} \right) = \frac{{\left( {1 - \frac{{T_{\mathrm{o}}}}{{T_{\mathrm{H}}}}} \right)}}{{\left( {1 - \frac{{T_{\mathrm{o}}}}{{T_{{\mathrm{adia}}}}}} \right)}}\)