Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Lessons from counterpart searches in LIGO and Virgo’s third observing campaign

No confirmed counterparts during LIGO and Virgo’s third observing run bring more questions than answers to the active multi-messenger community, which is adapting collaboratively and technically as expectations evolve and more data are taken.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Public O3 alerts, including BNS, NSBH and binary black hole (BBH) candidates.
Fig. 2: Example data science tools employed during O3.

References

  1. Abbott, B. P. et al. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  2. Metzger, B. D. Living Rev. Rel. 20, 3 (2017).

    Article  Google Scholar 

  3. Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Nature 551, 80–84 (2017).

    Article  ADS  Google Scholar 

  4. Abbott, B. P. et al. Astrophys. J. 892, L3 (2020).

    Article  ADS  Google Scholar 

  5. Coughlin, M. W. et al. Mon. Not. R. Astron. Soc. 492, 863–876 (2019).

    Article  ADS  Google Scholar 

  6. LIGO Scientific Collaboration and Virgo Collaboration GRB Coordinates Network 25333 (2019); https://gcn.gsfc.nasa.gov/gcn/gcn3/25333.gcn3.

  7. LIGO Scientific Collaboration and Virgo Collaboration GRB Coordinates Network 26640 (2020); https://gcn.gsfc.nasa.gov/other/GW200105ae.gcn3

  8. LIGO Scientific Collaboration and Virgo Collaboration GRB Coordinates Network 26759 (2020); https://gcn.gsfc.nasa.gov/gcn/gcn3/26759.gcn3

  9. Andreoni, I. et al. Astrophys. J. 881, L16 (2019).

    Article  ADS  Google Scholar 

  10. Antier, S. et al. Preprint at https://arxiv.org/abs/2004.04277 (2020).

  11. Ackley, K. et al. Preprint at https://arxiv.org/abs/2002.01950 (2020).

  12. Coughlin, M. W. et al. Astrophys. J. 885, L19 (2019).

    Article  ADS  Google Scholar 

  13. Gompertz, B. P. et al. Preprint at https://arxiv.org/abs/2004.00025 (2020).

  14. Coughlin, M. W. et al. Mon. Not. R. Astron. Soc. 489, 5775–5783 (2019).

    Article  ADS  Google Scholar 

  15. Bellm, E. C. et al. Publ. Astron. Soc. Pac. 131, 018002 (2018).

    Article  ADS  Google Scholar 

  16. Coughlin, M. W. et al. Publ. Astron. Soc. Pac. 131, 048001 (2019).

    Article  ADS  Google Scholar 

  17. Dyer, M. J. et al. Proc. SPIE 10704, 107040C (2018).

    Google Scholar 

  18. Ducoin, J.-G., Corre, D., Leroy, N. & Le Floch, E. Mon. Not. R. Astron. Soc. 492, 4768–4779 (2020).

    Article  ADS  Google Scholar 

  19. Salmon, L., Hanlon, L., Jeffrey, R. M. & Martin-Carrillo, A. Astron. Astrophys. 634, A32 (2020).

    Article  ADS  Google Scholar 

  20. Duev, D. A. et al. Mon. Not. R. Astron. Soc. 489, 3582–3590 (2019).

    ADS  Google Scholar 

  21. Nordin, J. et al. Astron. Astrophys. 631, A147 (2019).

    Article  Google Scholar 

  22. Wyatt, S. D. et al. Astrophys. J. 894, 127 (2020).

    Article  ADS  Google Scholar 

  23. Boch, T., Oberto, A., Fernique, P. & Bonnarel, F. In Astronomical Society of the Pacific Conference Series Vol. 442 (eds Evans, I. N. et al.) 683–686 (ASP, 2011).

  24. Smith, K. W. et al. Res. Notes AAS 3, 26 (2019).

    Article  ADS  Google Scholar 

  25. Saha, A. et al. Proc. SPIE 9149, 914908 (2014).

    Article  Google Scholar 

  26. Street, R. A., Bowman, M., Saunders, E. S. & Boroson, T. Proc. SPIE 10707, 1070711 (2018).

    Google Scholar 

  27. Villar, V. A. et al. Astrophys. J. Lett. 851, L21 (2017).

    Article  ADS  Google Scholar 

  28. Ivezić, Z. et al. Atrophys. J. 873, 111 (2019).

    Article  ADS  Google Scholar 

  29. Huerta, E. A. et al. Nat. Rev. Phys. 1, 600–608 (2019).

    Article  Google Scholar 

  30. Margalit, B. & Metzger, B. D. Astrophys. J. 880, L15 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank K. Ackley, M. Almualla, S. Anand, I. Andreoni, A. Castro-Tirado, D. Coulter, R. Foley, D. Kaplan, M. Kasliwal and J. Sollerman for reading an early version of this manuscript. I also want to thank D. Kaplan for providing inspiration for Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Coughlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coughlin, M.W. Lessons from counterpart searches in LIGO and Virgo’s third observing campaign. Nat Astron 4, 550–552 (2020). https://doi.org/10.1038/s41550-020-1130-3

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-020-1130-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing