Extended Data Fig. 6: Vesta’s thermal evolution for shallow magma ocean and global magma ocean scenarios.
From: Common feedstocks of late accretion for the terrestrial planets

The thermal evolution is calculated with partitioning of 26Al for shallow magma ocean (a), but without the partitioning of 26Al for the global magma ocean (c). (b) is a zoom into Vesta’s subsurface with the shallow magma ocean (a) showing a life-time of ~ 0.07 Myr and a depth of a few hundred metres. In each panel, the horizontal axis represents the time since CAI formation, whereas the vertical axis represents the radius variation during the thermal evolution. Vesta was assumed to accrete instantaneously and form an initially porous structure with a larger size, then underwent sintering from an unconsolidated and highly porous state to a consolidated state arriving at the current asteroid size thereafter (see ref. 85). For the shallow magma ocean scenario, the mantle crystallizes completely within ~ 200 Myr after CAI formation, when the temperature falls below the silicate solidus of ~ 1425 K (a). For the global magma ocean scenario, complete mantle crystallization occurs within ~ 300 Myr after CAI formation (c). The model is from Neumann et al.40, with the parameters adopted for the calculation of melting and heat sources from Neumann et al.130.