Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges to the cosmological constant model following results from the Dark Energy Survey

Abstract

In the past year, several pieces of evidence have pointed to a possible deviation from the standard cosmological model, the Λ cold dark matter model (where Λ is the cosmological constant). The recent work by the Dark Energy Survey collaboration reports a preference in the ballpark of 3σ in favour of dynamical dark energy against the standard cosmological model. For that, it used its final analyses of baryonic acoustic oscillations and type Ia supernovae, both of which are sensitive to the expansion history of the Universe, in combination with the cosmic microwave background from Planck. This adds to the growing debate about the nature of dark energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measurements of distances from the DES expansion history probes.
Fig. 2: Determination of the parameters of the dark energy from DES geometric probes (BAOs and supernovae) and the CMB from Planck.

Similar content being viewed by others

References

  1. Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity (Meuthen & Co., 1923).

  2. Percival, W. J. et al. The 2df Galaxy Redshift Survey: the power spectrum and the matter content of the Universe. Mon. Not. R. Astron. Soc. 327, 1297–1306 (2001).

    Article  ADS  Google Scholar 

  3. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  4. Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astron. J. 517, 565–586 (1999).

    Article  Google Scholar 

  5. Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astron. J. 633, 560–574 (2005).

    Article  Google Scholar 

  6. Cole, S. et al. The 2df Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505–534 (2005).

    Article  ADS  Google Scholar 

  7. Fixsen, D. J. et al. The cosmic microwave background spectrum from the FullCOBEFIRAS data set. Astron. J. 473, 576–587 (1996).

    Article  Google Scholar 

  8. Netterfield, C. B. et al. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astron. J. 571, 604–614 (2002).

    Article  Google Scholar 

  9. Hinshaw, G. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: the angular power spectrum. Astrophys. J. Suppl. Ser. 148, 135–159 (2003).

    Article  ADS  Google Scholar 

  10. Peebles, P. J. E. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. Astrophys. J. 263, 1–5 (1982).

    Article  Google Scholar 

  11. Ostriker, P. J., Peebles, P. J. E. & Yahil, A. The size and mass of galaxies, and the mass of the Universe. Astrophys. J. 193, 1–4 (1974).

    Article  Google Scholar 

  12. Einasto, J., Kaasik, A. & Saar, E. Dynamic evidence on massive coronas of galaxies. Nature 250, 309–310 (1974).

    Article  ADS  Google Scholar 

  13. Albrecht, A. et al. Report of the Dark Energy Task Force. Preprint at https://arxiv.org/abs/astro-ph/0609591 (2006).

  14. The DES collaboration The Dark Energy Survey. Preprint at https://arxiv.org/abs/astro-ph/0510346 (2005).

  15. Flaugher, B. et al. The Dark Energy Camera. Astron. J. 150, 150 (2015).

    Article  ADS  Google Scholar 

  16. The Planck collaboration Planck 2018 results—VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  17. The DES collaboration The Dark Energy Survey: cosmology results with 1500 new high-redshift type Ia supernovae using the full 5 yr data set. Astrophys. J. Lett. 973, L14 (2024).

    Article  Google Scholar 

  18. The DES collaboration Dark Energy Survey: a 2.1% measurement of the angular baryonic acoustic oscillation scale at redshift zeff=0.85 from the final dataset. Phys. Rev. D 110, 063515 (2024).

    Article  Google Scholar 

  19. The DESI collaboration DESI 2024 VI: cosmological constraints from the measurements of baryon acoustic oscillations. J. Cosmol. Astropart. Phys. 2025, 021 (2025).

    Article  Google Scholar 

  20. The DES collaboration Dark Energy Survey: implications for cosmological expansion models from the final DES baryon acoustic oscillation and supernova data. Preprint at https://arxiv.org/abs/2503.06712 (2025).

  21. The DESI collaboration DESI DR2 results II: measurements of baryon acoustic oscillations and cosmological constraints. Preprint at https://arxiv.org/abs/2503.14738 (2025).

  22. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  23. Velten, H. E. S., Marttens, R. F. & Zimdahl, W. Aspects of the cosmological “coincidence problem”. Eur. Phys. J. C 74, 1–8 (2014).

    Article  Google Scholar 

  24. Chevallier, M. & Polarski, D. Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 10, 213–223 (2001).

    Article  ADS  Google Scholar 

  25. Linder, E. V. Exploring the expansion history of the Universe. Phys. Rev. Lett. 90, 091301 (2003).

    Article  ADS  Google Scholar 

  26. Putter, R. & Linder, E. V. Calibrating dark energy. J. Cosmol. Astropart. Phys. 10, 042 (2008).

    Article  Google Scholar 

  27. Frieman, J. A., Hill, C. T., Stebbins, A. & Waga, I. Cosmology with ultralight pseudo Nambu–Goldstone bosons. Phys. Rev. Lett. 75, 2077–2080 (1995).

    Article  ADS  Google Scholar 

  28. Brax, P. & Martin, J. Quintessence and supergravity. Phys. Lett. B 468, 40–45 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  29. Caldwell, R. R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23–29 (2002).

    Article  ADS  Google Scholar 

  30. Carroll, S. M., Hoffman, M. & Trodden, M. Can the dark energy equation-of-state parameter w be less than −1? Phys. Rev. D 68, 023509 (2003).

    Article  ADS  Google Scholar 

  31. Hu, W. Crossing the phantom divide: dark energy internal degrees of freedom. Phys. Rev. D 71, 047301 (2005).

    Article  ADS  Google Scholar 

  32. Rindler, W. Visual horizons in world models. Mon. Not. R. Astron. Soc. 116, 662–677 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  33. Yamamoto, M. et al. Dark Energy Survey year 6 results: cell-based coadds and metadetection weak lensing shape catalogue. Preprint at https://arxiv.org/abs/2501.05665 (2025).

  34. To, C.-H. et al. Dark Energy Survey: modeling strategy for multiprobe cluster cosmology and validation for the full six-year dataset. Preprint at https://arxiv.org/abs/2503.13631 (2025).

  35. Mellier, Y. et al. Euclid. I. Overview of the Euclid mission. Astron. Astrophys. 697, A1 (2025).

    Article  Google Scholar 

  36. Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.A. has been supported by the Ramon y Cajal fellowship (RYC2022-037311-I) funded by the State Research Agency of the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) and Social European Funds plus (FSE+). We are grateful for having been members of the Dark Energy Survey collaboration, which allowed us to participate in the analyses that led to the results discussed in this paper. The insights presented in this article represent only the views of the authors.

Author information

Authors and Affiliations

Authors

Contributions

S.A., J.M.-F. and M.V. coordinated the preparation and defined the structure and main message of the paper. S.A. and J.M.F. wrote the body of the article. S.A., J.M.-F. and M.V. were heavily involved in the science analysis that preceded this Perspective. J.M.-F. prepared the figures.

Corresponding authors

Correspondence to Santiago Avila or Juan Mena-Fernández.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, S., Mena-Fernández, J. & Vincenzi, M. Challenges to the cosmological constant model following results from the Dark Energy Survey. Nat Astron 9, 1129–1133 (2025). https://doi.org/10.1038/s41550-025-02618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02618-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing