Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A smooth filament origin for distant prolate galaxies seen by JWST and HST

Abstract

The initial gravitational collapse of dark matter and gas formed a universal filamentary network where the first galaxies formed, with shapes and sizes that depended on the type of dark matter. Claims from deep-space imaging surveys that elongated galaxies predominate at z > 3 are examined here by comparison with detailed hydrodynamical simulations of cold dark matter (CDM), warm dark matter (WDM) and wave/fuzzy dark matter (ψDM). For CDM and WDM, we have sufficient volume, 103 Mpc/h3, to generate galaxies with stellar masses >109M at z > 2, which allows a comparison with the CEERS and CANDELS surveys. Here we find that the observed tendency towards elongated, prolate-shaped young galaxies is well matched by WDM based on material accreted along smooth filaments during the first ~500 Myr, with little dependence on stellar mass. This contrasts with CDM, where the stellar morphology is mainly spheroidal and formed from the merging of fragmented filaments. For CDM, several subhaloes are predicted to be visible, whereas for WDM and ψDM, early merging is rare. Our findings show how the shapes and sizes of early galaxies are sensitive to the smoothness of the underlying filament network, which provides a new constraint on the nature of dark matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Number of galaxies resulting from the 10 Mpc/h box simulation.
Fig. 2: Illustrative comparison of high-z galaxies detected by JWST and simulated galaxies.
Fig. 3: 2D and 3D stellar morphologies of simulated galaxies compared with observations for 3 < z < 8.
Fig. 4: 2D and 3D stellar morphologies of simulated galaxies at 2 < z < 3.
Fig. 5: Projected semi-axis ratio b/a versus projected semimajor axis shown for the stellar distribution of each galaxy.
Fig. 6: Redshift dependence of the projected axis ratio b/a.

Similar content being viewed by others

Data availability

The simulation data used in this work amount to nearly 4 TB in total, with each snapshot divided into several large files (~32 GB per snapshot). Owing to their size, storage limitations and collaboration agreements among the participating institutions, these data cannot be publicly shared. Access to the simulation outputs may be granted upon request, subject to data-sharing agreements that ensure appropriate use and to approval by all team members and institutions. A complete set of simulated galaxies and 3D animations illustrating the evolution of these simulations can also be provided upon request from the corresponding author.

Code availability

We used the MVEE implementation by Gabriel-p, which is available via GitHub at https://gist.github.com/Gabriel-p/4ddd31422a88e7cdf953. For visualization, ellipses are plotted using the matplotlib.patches.Ellipse class, documented at https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.patches.Ellipse.html.

References

  1. Finkelstein, S. L. et al. The complete CEERS early Universe galaxy sample: a surprisingly slow evolution of the space density of bright galaxies at z ~ 8.5–14.5. Astrophys. J. Lett. 969, L2 (2024).

    Article  ADS  Google Scholar 

  2. Harikane, Y. et al. A comprehensive study of galaxies at z ~ 9–16 found in the early JWST data: ultraviolet luminosity functions and cosmic star formation history at the pre-reionization epoch. Astrophys. J. Suppl. Ser. 265, 5 (2023).

    Article  ADS  Google Scholar 

  3. Robertson, B. E. et al. Earliest galaxies in the JADES Origins field: luminosity function and cosmic star formation rate density 300 Myr after the Big Bang. Astrophys. J. 970, 31 (2024).

    Article  ADS  Google Scholar 

  4. Adams, N. J. et al. EPOCHS. II. The ultraviolet luminosity function from 7.5 < z < 13.5 using 180 arcmin2 of deep, blank fields from the PEARLS survey and public JWST data. Astrophys. J. 965, 169 (2024).

    Article  ADS  Google Scholar 

  5. Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).

    Article  ADS  Google Scholar 

  6. D’Eugenio, F. et al. JADES: carbon enrichment 350 Myr after the Big Bang. Astron. Astrophys. 689, A152 (2024).

    Article  Google Scholar 

  7. Witstok, J. et al. Witnessing the onset of reionization through Lyman-α emission at redshift 13. Nature 639, 897–901 (2025).

    Article  ADS  Google Scholar 

  8. Wu, Z. et al. JADES-GS-z14-1: a compact, faint galaxy at z ≈ 14 with weak metal lines from extremely deep JWST MIRI, NIRCam, and NIRSpec observations. Astrophys. J. 992, 212 (2025).

    Article  ADS  Google Scholar 

  9. Labbé, I. et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616, 266–269 (2023).

    Article  ADS  Google Scholar 

  10. Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024).

    Article  ADS  Google Scholar 

  11. Donnan, C. T. et al. The evolution of the galaxy UV luminosity function at redshifts z 8–15 from deep JWST and ground-based near-infrared imaging. Mon. Not. R. Astron. Soc. 518, 6011–6040 (2023).

    Article  ADS  Google Scholar 

  12. Kocevski, D. D. et al. The rise of faint, red active galactic nuclei at z > 4: a sample of little red dots in the JWST extragalactic legacy fields. Astrophys. J. 986, 126 (2025).

    Article  ADS  Google Scholar 

  13. Kokorev, V. et al. A census of photometrically selected little red dots at 4 < z < 9 in JWST blank fields. Astrophys. J. 968, 38 (2024).

    Article  ADS  Google Scholar 

  14. Williams, C. C. et al. The galaxies missed by Hubble and ALMA: the contribution of extremely red galaxies to the cosmic census at 3 < z < 8. Astrophys. J. 968, 34 (2024).

    Article  ADS  Google Scholar 

  15. Carranza-Escudero, M. et al. Lonely little red dots: challenges to the active galactic nucleus nature of little red dots through their clustering and spectral energy distributions. Astrophys. J. Lett. 989, L50 (2025).

    Article  ADS  Google Scholar 

  16. Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10–12 revealed by JWST. Astrophys. J. Lett. 940, L14 (2022).

    Article  ADS  Google Scholar 

  17. Goulding, A. D. et al. UNCOVER: the growth of the first massive black holes from JWST/NIRSpec-spectroscopic redshift confirmation of an X-ray luminous AGN at z = 10.1. Astrophys. J. Lett. 955, L24 (2023).

    Article  ADS  Google Scholar 

  18. Geris, S. et al. JADES reveals a large population of low-mass black holes at high redshift. Preprint at https://doi.org/10.48550/arXiv.2506.22147 (2025).

  19. Pascalau, R. G. et al. When relics were made: vigorous stellar rotation and low dark matter content in the massive ultra-compact galaxy GS-9209 at z = 4.66. Preprint at https://doi.org/10.48550/arXiv.2505.06349 (2025).

  20. D’Eugenio, F. et al. A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z = 3. Nat. Astron. 8, 1443–1456 (2024).

    Article  ADS  Google Scholar 

  21. Wang, W. et al. A giant disk galaxy two billion years after the Big Bang. Nat. Astron. 9, 710–719 (2025).

    Article  ADS  Google Scholar 

  22. Xiao, M. et al. PANORAMIC: discovery of an ultra-massive grand-design spiral galaxy at z ~ 5.2. Astron. Astrophys. 696, A156 (2025).

    Article  Google Scholar 

  23. Géron, T. et al. Galaxy zoo CEERS: bar fractions up to z ~ 4.0. Astrophys. J. 987, 74 (2025).

    Article  ADS  Google Scholar 

  24. Huang, S. et al. Large gas inflow driven by a matured galactic bar in the early Universe. Nature 641, 861–865 (2025).

    Article  ADS  Google Scholar 

  25. Carnall, A. C. et al. A massive quiescent galaxy at redshift z = 4.658. Nature 619, 716–719 (2023).

    Article  ADS  Google Scholar 

  26. Glazebrook, K. et al. A massive, quiescent galaxy at a redshift of z = 3.717. Nature 544, 71–74 (2017).

    Article  ADS  Google Scholar 

  27. Glazebrook, K. et al. A massive galaxy that formed its stars at z ≈ 11. Nature 628, 277–281 (2024).

    Article  ADS  Google Scholar 

  28. Espejo Salcedo, J. M. et al. Galaxy morphologies at cosmic noon with JWST: a foundation for exploring gas transport with bars and spiral arms. Astron. Astrophys. 700, A42 (2025).

    Article  Google Scholar 

  29. Carnall, A. C. et al. The JWST EXCELS survey: too much, too young, too fast? Ultra-massive quiescent galaxies at 3 < z < 5. Mon. Not. R. Astron. Soc. 534, 325–348 (2024).

    Article  ADS  Google Scholar 

  30. Pandya, V. et al. Galaxies going bananas: inferring the 3D geometry of high-redshift galaxies with JWST-CEERS. Astrophys. J. 963, 54 (2024).

    Article  ADS  Google Scholar 

  31. Finkelstein, S. L. et al. CEERS key paper. I. An early look into the first 500 Myr of galaxy formation with JWST. Astrophys. J. 946, L13 (2023).

    Article  ADS  Google Scholar 

  32. Westcott, L. et al. EPOCHS. XI. The structure and morphology of galaxies in the epoch of reionization to z ~ 12.5. Astrophys. J. 983, 121 (2025).

    Article  ADS  Google Scholar 

  33. Gibson, J. L. et al. JADES ultrared flattened objects: morphologies and spatial gradients in color and stellar populations. Astrophys. J. 974, 48 (2024).

    Article  ADS  Google Scholar 

  34. Ferreira, L. et al. Panic! at the disks: first rest-frame optical observations of galaxy structure at z > 3 with JWST in the SMACS 0723 field. Astrophys. J. 938, L2 (2022).

    Article  ADS  Google Scholar 

  35. Cowie, L. L., Hu, E. M. & Songaila, A. Faintest galaxy morphologies from HST WFPC2 imaging of the Hawaii Survey Fields. Astron. J. 110, 1576 (1995).

    Article  ADS  Google Scholar 

  36. Elmegreen, D. M., Elmegreen, B. G. & Sheets, C. M. Chain galaxies in the Tadpole Advanced Camera for Surveys field. Astrophys. J. 603, 74–81 (2004).

    Article  ADS  Google Scholar 

  37. Straughn, A. N. et al. Tracing galaxy assembly: tadpole galaxies in the Hubble Ultra Deep Field. Astrophys. J. 639, 724–730 (2006).

    Article  ADS  Google Scholar 

  38. van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size–mass distribution since z = 3. Astrophys. J. 788, 28 (2014).

    Article  ADS  Google Scholar 

  39. Zhang, H. et al. The evolution of galaxy shapes in CANDELS: from prolate to discy. Mon. Not. R. Astron. Soc. 484, 5170–5191 (2019).

    Article  ADS  Google Scholar 

  40. Law, D. R. et al. An HST/WFC3-IR morphological survey of galaxies at z = 1.5–3.6. I. Survey description and morphological properties of star-forming galaxies. Astrophys. J. 745, 85 (2012).

    Article  ADS  Google Scholar 

  41. Odewahn, S. C., Burstein, D. & Windhorst, R. A. The axis ratio distribution of local and distant galaxies. Astron. J. 114, 2219 (1997).

    Article  ADS  Google Scholar 

  42. Windhorst, R. A. et al. A Hubble Space Telescope survey of the mid-ultraviolet morphology of nearby galaxies. Astrophys. J. Suppl. Ser. 143, 113–158 (2002).

    Article  ADS  Google Scholar 

  43. Danhaive, A. L. et al. The dawn of disks: unveiling the turbulent ionized gas kinematics of the galaxy population at z ~ 4–6 with JWST/NIRCam grism spectroscopy. Mon. Not. R. Astron. Soc 543, 3249–3302 (2025).

    Article  ADS  Google Scholar 

  44. Adamo, A. et al. The first billion years according to JWST. Nat. Astron. 9, 1134–1147 (2025).

    Article  ADS  Google Scholar 

  45. Huertas-Company, M. et al. COSMOS-Web: the emergence of the Hubble sequence. Preprint at https://doi.org/10.48550/arXiv.2502.03532 (2025).

  46. Mocz, P. et al. Galaxy formation with BECDM. II. Cosmic filaments and first galaxies. Mon. Not. R. Astron. Soc. 494, 2027–2044 (2020).

    Article  ADS  Google Scholar 

  47. Tomassetti, M. et al. Evolution of galaxy shapes from prolate to oblate through compaction events. Mon. Not. R. Astron. Soc. 458, 4477–4497 (2016).

    Article  ADS  Google Scholar 

  48. Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    Article  ADS  Google Scholar 

  49. van der Wel, A. et al. Geometry of star-forming galaxies from SDSS, 3D-HST, and CANDELS. Astrophys. J. 792, L6 (2014).

    Article  ADS  Google Scholar 

  50. Grogin, N. A. et al. CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).

    Article  ADS  Google Scholar 

  51. Ceverino, D., Primack, J. & Dekel, A. Formation of elongated galaxies with low masses at high redshift. Mon. Not. R. Astron. Soc. 453, 408–413 (2015).

    Article  ADS  Google Scholar 

  52. Kartaltepe, J. S. et al. CEERS key paper. III. The diversity of galaxy structure and morphology at z = 3–9 with JWST. Astrophys. J. 946, L15 (2023).

    Article  ADS  Google Scholar 

  53. Baldry, I. K. et al. Galaxy and mass assembly: the G02 field, Herschel-ATLAS target selection and data release 3. Mon. Not. R. Astron. Soc. 474, 3875–3888 (2018).

    Article  ADS  Google Scholar 

  54. Klein, C. et al. The shape of FIREbox galaxies and a potential tension with low-mass disks. Preprint at https://doi.org/10.48550/arXiv.2503.05612 (2025).

  55. Wang, B., Peng, Y., Cappellari, M., Gao, H. & Mo, H. On the kinematic nature of apparent disks at high redshifts: local counterparts are not dominated by ordered rotation but by tangentially anisotropic random motion. Astrophys. J. Lett. 973, L29 (2024).

    Article  ADS  Google Scholar 

  56. del Valle-Espinosa, M. G. et al. Spatially resolved chemodynamics of the starburst dwarf galaxy CGCG 007-025: evidence for recent accretion of metal-poor gas. Mon. Not. R. Astron. Soc. 522, 2089–2104 (2023).

    Article  ADS  Google Scholar 

  57. Schive, H.-Y., Chiueh, T., Broadhurst, T. & Huang, K.-W. Contrasting galaxy formation from quantum wave dark matter, ψDM, with ΛCDM, using Planck and Hubble data. Astrophys. J. 818, 89 (2016).

    Article  ADS  Google Scholar 

  58. Duan, Q. et al. Galaxy mergers in the epoch of reionization. I. A JWST study of pair fractions, merger rates, and stellar mass accretion rates at z = 4.5–11.5. Mon. Not. R. Astron. Soc. 540, 774–805 (2025).

    Article  ADS  Google Scholar 

  59. Puskás, D. et al. Constraining the major merger history of z ~ 3–9 galaxies using JADES: dominant in situ star formation. Mon. Not. R. Astron. Soc. 540, 2146–2175 (2025).

    Article  ADS  Google Scholar 

  60. Windhorst, R. A. et al. Galaxy science with ORCAS: faint star-forming clumps to AB ≤31 mag and re ≥ 0.01". Preprint at https://doi.org/10.48550/arXiv.2106.02664 (2021).

  61. Brooks, A. M., Kuhlen, M., Zolotov, A. & Hooper, D. A baryonic solution to the missing satellites problem. Astrophys. J. 765, 22 (2013).

    Article  ADS  Google Scholar 

  62. Jeon, S. et al. Born to be starless: revisiting the missing satellite problem. Astrophys. J. 988, 136 (2025).

    Article  ADS  Google Scholar 

  63. Vogelsberger, M. et al. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 436, 3031–3067 (2013).

    Article  ADS  Google Scholar 

  64. Gao, L. & Theuns, T. Lighting the Universe with filaments. Science 317, 1527 (2007).

    Article  ADS  Google Scholar 

  65. Mocz, P. et al. First star-forming structures in fuzzy cosmic filaments. Phys. Rev. Lett. 123, 141301 (2019).

    Article  ADS  Google Scholar 

  66. Boyarsky, A., Iakubovskyi, D., Ruchayskiy, O., Rudakovskyi, A. & Valkenburg, W. 21-cm observations and warm dark matter models. Phys. Rev. D 100, 123005 (2019).

    Article  ADS  Google Scholar 

  67. Liu, Y., Gao, L., Liao, S. & Zhu, K. Prospects for detecting cosmic filaments in Lyα emission across redshifts z = 2–5. Astrophys. J. 984, 55 (2025).

    Article  ADS  Google Scholar 

  68. Ma, Z. et al. JWST view of three infant galaxies at z = 8.3 and implications for reionization. Astrophys. J. 975, 15 (2024).

    Article  Google Scholar 

  69. Loiacono, F. et al. A quasar-galaxy merger at z ~ 6.2: black hole mass and quasar properties from the NIRSpec spectrum. Astron. Astrophys. 685, A121 (2024).

    Article  Google Scholar 

  70. Pandya, V. et al. Can intrinsic alignments of elongated low-mass galaxies be used to map the cosmic web at high redshift? Mon. Not. R. Astron. Soc. 488, 5580–5593 (2019).

    Article  ADS  Google Scholar 

  71. Pozo, A. et al. Detection of a universal core-halo transition in dwarf galaxies as predicted by Bose–Einstein dark matter. Phys. Rev. D 110, 043534 (2024).

    Article  ADS  Google Scholar 

  72. Pozo, A. et al. Galaxy formation with wave/fuzzy dark matter: the core-halo structure and the solitonic imprint. Astron. Astrophys. 699, A308 (2025).

    Article  Google Scholar 

  73. Fudamoto, Y. et al. Identification of more than 40 gravitationally magnified stars in a galaxy at redshift 0.725. Nat. Astron. 9, 428–437 (2025).

    Article  ADS  Google Scholar 

  74. Yan, H. et al. JWST’s PEARLS: transients in the MACS J0416.1-2403 field. Astrophys. J. Suppl. Ser. 269, 43 (2023).

    Article  ADS  Google Scholar 

  75. Broadhurst, T. et al. Dark matter distinguished by skewed microlensing in the Dragon Arc. Astrophys. J. 978, L5 (2025).

    Article  ADS  Google Scholar 

  76. Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).

    Article  ADS  Google Scholar 

  77. Mocz, P. et al. Galaxy formation with BECDM. I. Turbulence and relaxation of idealized haloes. Mon. Not. R. Astron. Soc. 471, 4559–4570 (2017).

    Article  ADS  Google Scholar 

  78. Springel, V. N-GenIC: cosmological structure initial conditions. Astrophysics Source Code Library ascl:1502.003 (2015).

  79. Lewis, A. & Challinor, A. CAMB: code for anisotropies in the microwave background. Astrophysics Source Code Library ascl:1102.026 (2011).

  80. Hlozek, R., Grin, D., Marsh, D. J. E. & Ferreira, P. G. A search for ultralight axions using precision cosmological data. Phys. Rev. D 91, 103512 (2015).

    Article  ADS  Google Scholar 

  81. Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    Article  ADS  Google Scholar 

  82. Jung, M. et al. The AGORA high-resolution galaxy simulations comparison project. VIII. Disk formation and evolution of simulated Milky Way mass galaxy progenitors at 1 < z < 5. Preprint at https://doi.org/10.48550/arXiv.2505.05720 (2025).

  83. Pozo, A. et al. Wave dark matter and ultra-diffuse galaxies. Mon. Not. R. Astron. Soc. 504, 2868–2876 (2021).

    Article  ADS  Google Scholar 

  84. Aprile, E. et al. Search for new physics in electronic recoil data from XENONnT. Phys. Rev. Lett. 129, 161805 (2022).

    Article  ADS  Google Scholar 

  85. Planck Collaboration Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  86. Naoz, S., Yoshida, N. & Gnedin, N. Y. Simulations of early baryonic structure formation with stream velocity. I. Halo abundance. Astrophys. J. 747, 128 (2012).

    Article  ADS  Google Scholar 

  87. Vandenberghe, L., Boyd, S. & Wu, S.-P. Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19, 499–533 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.P., G.F.S. and T.B. are grateful to the DIPC for generous support. A.P. thanks the Center for Astrophysics Harvard & Smithsonian for warm hospitality. R.E. acknowledges support from grants 21-atp21-0077, NSF AST-1816420 and HST-GO-16173.001-A as well as from the Institute for Theory and Computation at the Center for Astrophysics. We are grateful to the supercomputer facility at Harvard University where most of the simulation work was done. R.W. acknowledges support from NASA JWST Interdisciplinary Scientist grants NAG5-12460, NNX14AN10G and 80NSSC18K0200 from GSFC. This work has been supported by the Spanish project PID2020-114035GB-100 (MINECO/AEI/FEDER, UE). H.N.L., G.F.S. and T.B. are supported by the Collaborative Research Fund (grant C6017-20G), which is issued by the Research Grants Council of Hong Kong S.A.R. Finally, we are grateful to L. Oldham for her thoughtful guidance and assistance in improving this work during the review process.

Author information

Authors and Affiliations

Authors

Contributions

A.P. and T.B. designed and coordinated the work, prepared the figures and drafted the paper. A.P. and H.N.L. carried out all the simulations, with support from R.E., P.M. and M.V. G.F.S., L.H., C.J.C. and R.W. contributed to the analysis and interpretation of the data and results and to the final paper.

Corresponding author

Correspondence to Alvaro Pozo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Sections 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozo, A., Broadhurst, T., Emami, R. et al. A smooth filament origin for distant prolate galaxies seen by JWST and HST. Nat Astron (2025). https://doi.org/10.1038/s41550-025-02721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41550-025-02721-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing