Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fine tuning towards the next generation of engineered T cells

Abstract

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in treating haematologic malignancies. However, the rise in clinical use has highlighted substantial challenges related to T cell- and tumour-intrinsic mechanisms. Additionally, the tumour microenvironment can render these treatments dysfunctional. Extensive attempts in the field are optimizing the key elements of CAR T cell products for therapy, including antigen specificity and affinity, metabolic fitness, phenotypic stability and manufacturing. Recent efforts in transcriptomic and epigenetic profiling, as well as high-throughput functional screening methods, have identified new classes of targets, binders and mechanisms to be exploited. Advances in gene editing and delivery offer opportunities to translate those strategies into clinical trials. Here we discuss the multifaceted exploration of CAR T cell engineering approaches and emerging directions, highlighting the available strategies that can be built on to create the next generation of cellular therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative binding domains in CAR engineering.
Fig. 2: Evolution of the CAR structure.
Fig. 3: Engineering strategies for favourable CAR T cell metabolism.
Fig. 4: Engineering strategies and targets to overcome T cell dysfunction.
Fig. 5: Engineering strategies to overcome challenges in the TME.
Fig. 6: Clinical readiness level of current CAR T cell engineering approaches.
Fig. 7: Future direction of engineering CAR T cell therapy.

Similar content being viewed by others

References

  1. Sadelain, M. & Mulligan, R. C. Efficient-retroviral-mediated gene transfer into murine primary lymphocytes. In Proc. 8th International Congress of Immunology (ed. International Union of Immunological Societies) Abstract no. 34 (Springer, 1992).

  2. Miller, A. D. Retrovirus packaging cells. Hum. Gene Ther. 1, 5–14 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ochi, T. et al. A single-chain antibody generation system yielding CAR-T cells with superior antitumor function. Commun. Biol. 4, 273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Long, A. H. et al. 4-1BB costimulation ameliorates T-cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, J. et al. Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res. 33, 341–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kozani, P. S., Kozani, P. S. & O’Connor, R. S. Humanized chimeric antigen receptor (CAR) T cells. J. Cancer Immunol. 3, 183–187 (2021).

    Google Scholar 

  9. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Sarén, T. et al. Complementarity-determining region clustering may cause CAR-T cell dysfunction. Nat. Commun. 14, 4732 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou, J. et al. The persistence and antitumor efficacy of CAR-T cells are modulated by tonic signaling within the CDR. Int. Immunopharmacol. 126, 111239 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Siegler, E., Li, S., Kim, Y. J. & Wang, P. Designed ankyrin repeat proteins as Her2 targeting domains in chimeric antigen receptor-engineered T cells. Hum. Gene Ther. 28, 726–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balakrishnan, A. et al. Multispecific targeting with synthetic ankyrin repeat motif chimeric antigen receptors. Clin. Cancer Res. 25, 7506–7516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walsh, S. T. R., Cheng, H., Bryson, J. W., Roder, H. & Degrado, W. F. Solution structure and dynamics of a de novo designed three-helix bundle protein. Proc. Natl Acad. Sci. USA 96, 5486–5491 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buonato, J. M. et al. Preclinical efficacy of BCMA-directed CAR T cells incorporating a novel D domain antigen recognition domain. Mol. Cancer Ther. 21, 1171–1183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin, H. et al. Chimeric antigen receptors incorporating D domains targeting CD123 direct potent mono- and bi-specific antitumor activity of T cells. Mol. Ther. 27, 1262–1274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frigault, M. J. et al. Phase 1 study of CART-ddBCMA for the treatment of subjects with relapsed and refractory multiple myeloma. Blood Adv. 7, 768–777 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Shaffer, D. R. et al. T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies. Blood 117, 4304–4314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Q. J. et al. Preclinical evaluation of chimeric antigen receptors targeting CD70-expressing cancers. Clin. Cancer Res. 23, 2267–2276 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Sauer, T. et al. CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood 138, 318–330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ochi, F. et al. Gene-modified human α/β-T cells expressing a chimeric CD16-CD3ζ receptor as adoptively transferable effector cells for anticancer monoclonal antibody therapy. Cancer Immunol. Res. 2, 249–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Kudo, K. et al. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res. 74, 93–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Clémenceau, B. et al. Antibody-dependent cellular cytotoxicity (ADCC) is mediated by genetically modified antigen-specific human T lymphocytes. Blood 107, 4669–4677 (2006).

    Article  PubMed  Google Scholar 

  25. Van Cutsem, E. et al. Phase 1 studies assessing the safety and clinical activity of autologous and allogeneic NKG2D-based CAR-T therapy in metastatic colorectal cancer. Ann. Oncol. 30, iv124–iv125 (2019).

    Article  Google Scholar 

  26. Dai, H. et al. Development of NKG2D chimeric antigen receptor-T cells as targeted therapy of liver cancer. J. Clin. Oncol. 36, e15057 (2018).

    Article  Google Scholar 

  27. Chen, N. et al. Targeting of IL-10R on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood Cancer J. 11, 144 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang, G. et al. Genetically modified T cells targeting interleukin-11 receptor α-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res. 72, 271–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Brown, C. E. et al. Optimization of IL13Rα2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol. Ther. 26, 31–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Kahlon, K. S. et al. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. 64, 9160–9166 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Hombach, A. et al. IL12 integrated into the CAR exodomain converts CD8+ T cells to poly-functional NK-like cells with superior killing of antigen-loss tumors. Mol. Ther. 30, 593–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Han, X. et al. Adnectin-based design of chimeric antigen receptor for T cell engineering. Mol. Ther. 25, 2466–2476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salzer, B. et al. Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nat. Commun. 11, 4166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zajc, C. U. et al. A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc. Natl Acad. Sci. USA 117, 14926–14935 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuwana, Y. et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochem. Biophys. Res. Commun. 149, 960–968 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Schoutrop, E. et al. Tuned activation of MSLN-CAR T cells induces superior antitumor responses in ovarian cancer models. J. Immunother. Cancer 11, e005691 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Park, J. H. et al. A phase I study of CD19-targeted 19(T2)28z1xx CAR T cells in adult patients with relapsed or refractory diffuse large B-cell lymphoma. Blood 140, 403–404 (2022).

    Article  Google Scholar 

  40. Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu, T. et al. A novel TREM1/DAP12-based multiple chain CAR-T cell targets PTK7 in ovarian cancer therapy. Med. Oncol. 40, 226 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Velasco Cárdenas, R. M. H. et al. Harnessing CD3 diversity to optimize CAR T cells. Nat. Immunol. 24, 2135–2149 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gudipati, V. et al. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat. Immunol. 21, 848–856 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhong, X. S., Matsushita, M., Plotkin, J., Riviere, I. & Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI 3 kinase/AKT/Bcl-X L activation and CD8 T cell-mediated tumor eradication. Mol. Ther. 18, 413–420 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Textor, A. et al. Cd28 co-stimulus achieves superior CAR T cell effector function against solid tumors than 4-1BB co-stimulus. Cancers (Basel) 13, 1050 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van der Stegen, S. J. C., Hamieh, M. & Sadelain, M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 14, 499–509 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guedan, S. et al. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. J. Clin. Invest. 130, 3087–3097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boroughs, A. C. et al. A distinct transcriptional program in human CAR T cells bearing the 4-1BB signaling domain revealed by scRNA-Seq. Mol. Ther. 28, 2577–2592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Del Bufalo, F. et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N. Engl. J. Med. 388, 1284–1295 (2023).

    Article  PubMed  Google Scholar 

  59. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guedan, S. et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124, 1070–1080 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guedan, S. et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 3, e96976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moreno-Cortes, E. et al. ICOS and OX40 tandem co-stimulation enhances CAR T-cell cytotoxicity and promotes T-cell persistence phenotype. Front. Oncol. 13, 1200914 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song, D. G. et al. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119, 696–706 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Prinzing, B. et al. MyD88/CD40 signaling retains CAR T cells in a less differentiated state. JCI Insight 5, e136093 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Collinson-Pautz, M. R. et al. Constitutively active MyD88/CD40 costimulation enhances expansion and efficacy of chimeric antigen receptor T cells targeting hematological malignancies. Leukemia 33, 2195–2207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hudecek, M. et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res. 19, 3153–3164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Levin-Piaeda, O. et al. The intracellular domain of CD40 is a potent costimulatory element in chimeric antigen receptors. J. Immunother. 44, 209–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Jonnalagadda, M. et al. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol. Ther. 23, 757–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Alabanza, L. et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol. Ther. 25, 2452–2465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, S. et al. DAP10 integration in CAR-T cells enhances the killing of heterogeneous tumors by harnessing endogenous NKG2D. Mol. Ther. Oncolytics 26, 15–26 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodriguez-Marquez, P. et al. CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome. Sci. Adv. 8, eabo0514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Glaser, V. et al. Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells. Genome Biol. 24, 89 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liao, C. et al. CD38-specific CAR integrated into CD38 locus driven by different promoters causes distinct antitumor activities of T and NK cells. Adv. Sci. 10, e2207394 (2023).

    Article  Google Scholar 

  76. Tipanee, J., Samara-Kuko, E., Gevaert, T., Chuah, M. K. & VandenDriessche, T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol. Ther. 30, 3155–3175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Deep, G. & Panigrahi, G. K. Hypoxia-induced signaling promotes prostate cancer progression: exosomes role as messenger of hypoxic response in tumor microenvironmen. Crit. Rev. Oncog. 20, 419–434 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kosti, P. et al. Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors. Cell Rep. Med. 2, 100227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gu, X., He, D., Li, C., Wang, H. & Yang, G. Development of inducible CD19-CAR T cells with a Tet-on system for controlled activity and enhanced clinical safety. Int. J. Mol. Sci. 19, 3455 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Agarwal, S. et al. In vivo generation of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. 28, 1783–1794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Da Vià, M. C. et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat. Med. 27, 616–619 (2021).

    Article  PubMed  Google Scholar 

  83. Rasche, L. et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat. Commun. 8, 268 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, Y. et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 13, eabb5191 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Simon, S. et al. Design of sensitive monospecific and bispecific synthetic chimeric T cell receptors for cancer therapy. Nat. Cancer 6, 647–665 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Larrayoz, M. et al. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat. Med. 29, 632–645 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Denk, D. et al. Expansion of T memory stem cells with superior anti-tumor immunity by Urolithin A-induced mitophagy. Immunity 55, 2059–2073.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Vogt, M. et al. Targeting MYC effector functions in pancreatic cancer by inhibiting the ATPase RUVBL1/2. Gut 73, 1509–1528 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Van Der Windt, G. J. W. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Panetti, S. et al. Engineering amino acid uptake or catabolism promotes CAR T-cell adaption to the tumor environment. Blood Adv. 7, 1754–1761 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Navarro, F. et al. Overcoming T cell dysfunction in acidic pH to enhance adoptive T cell transfer immunotherapy. Oncoimmunology 11, 2070337 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fultang, L. et al. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood 136, 1155–1160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hickman, T. L. et al. BOXR1030, an anti-GPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved anti-cell line derived tumor xenograft activity. PLoS ONE 17, e0266980 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Si, X. et al. Mitochondrial isocitrate dehydrogenase impedes CAR T cell function by restraining antioxidant metabolism and histone acetylation. Cell Metab. 36, 176–192.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  97. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schmidt, N. M. et al. Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint. Nat. Commun. 12, 2814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jung, I. Y. et al. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res. 78, 4692–4703 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Zhao, L. et al. Inhibition of cholesterol esterification enzyme enhances the potency of human chimeric antigen receptor T cells against pancreatic carcinoma. Mol. Ther. Oncolytics 16, 262–271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lontos, K. et al. Metabolic reprogramming via an engineered PGC-1α improves human chimeric antigen receptor T-cell therapy against solid tumors. J. Immunother. Cancer 11, e006522 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Laletin, V. et al. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J. Immunother. Cancer 11, e005845 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shui, J. W. et al. Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell-mediated immune responses. Nat. Immunol. 8, 84–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, X. et al. Attenuation of T cell receptor signaling by serine phosphorylation-mediated lysine 30 ubiquitination of SLP-76 protein. J. Biol. Chem. 287, 34091–34100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, M. et al. CRISPR/Cas9-mediated knockout of intracellular molecule SHP-1 enhances tumor-killing ability of CD133-targeted CAR T cells in vitro. Exp. Hematol. Oncol. 12, 88 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Du, X., Wiede, F., Darcy, P. K. & Tiganis, T. Abstract PR04: CRISPR-mediated PTPN2 deletion in CAR T cells enhances anti-tumor efficacy. Cancer Immunol. Res. 10, PR04 (2022).

    Article  Google Scholar 

  107. Naramura, M. et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat. Immunol. 3, 1192–1199 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Wiede, F. et al. PTPN 2 phosphatase deletion in T cells promotes anti‐tumour immunity and CAR T‐cell efficacy in solid tumours. EMBO J. 39, e103637 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Wu, L. et al. CD28-CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance. Cell Rep. Med. 4, 100917 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kalinin, R. S. et al. Engineered removal of PD-1 from the surface of CD19 CAR-T cells results in increased activation and diminished survival. Front. Mol. Biosci 8, 745286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mestermann, K. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci. Transl. Med. 11, eaau5907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhang, Y. et al. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front. Med. 11, 554–562 (2017).

    Article  PubMed  Google Scholar 

  113. Hu, B. et al. Nucleofection with plasmid DNA for CRISPR/Cas9-mediated inactivation of programmed cell death protein 1 in CD133-specific CAR T cells. Hum. Gene Ther. 30, 446–458 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Cui, Q. et al. CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J. Hematol. Oncol. 14, 82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Agarwal, S. et al. Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells. Immunity 56, 2388–2407.e9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Masoumi, E. et al. Genetic and pharmacological targeting of A2a receptor improves function of anti-mesothelin CAR T cells. J. Exp. Clin. Cancer Res. 39, 49 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tang, N. et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5, e133977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chen, X. et al. Secretion of bispecific protein of anti-PD-1 fused with TGF-β trap enhances antitumor efficacy of CAR-T cell therapy. Mol. Ther. Oncolytics 21, 144–157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, G. et al. Disruption of adenosine 2A receptor improves the anti-tumor function of anti-mesothelin CAR T cells both in vitro and in vivo. Exp. Cell. Res. 409, 112886 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Li, N. et al. Improving the anti-solid tumor efficacy of CAR-T cells by inhibiting adenosine signaling pathway. Oncoimmunology 9, 1824643 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Künkele, A. et al. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell fas-FasL-dependent AICD. Cancer Immunol. Res. 3, 368–379 (2015).

    Article  PubMed  Google Scholar 

  124. Tschumi, B. O. et al. CART cells are prone to Fas- and DR5-mediated cell death. J. Immunother. Cancer 6, 92 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ren, J. et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8, 17002–17011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lopez-Cobo, S. et al. SUV39H1 ablation enhances long-term CAR T function in solid tumors. Cancer Discov 14, 120–141 (2023).

    Article  Google Scholar 

  128. Someya, K. et al. Improvement of Foxp3 stability through CNS2 demethylation by TET enzyme induction and activation. Int. Immunol. 29, 365–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yue, X. et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213, 377–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jain, N. et al. Disruption of SUV39H1-mediated H3K9 methylation sustains CAR T-cell function. Cancer Discov. 14, 142–157 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jung, I. Y. et al. BLIMP1 and NR4A3 transcription factors reciprocally regulate antitumor CAR T cell stemness and exhaustion. Sci. Transl. Med. 14, eabn7336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao, H. et al. Genome-wide fitness gene identification reveals Roquin as a potent suppressor of CD8 T cell expansion and anti-tumor immunity. Cell Rep. 37, 110083 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Zheng, W. et al. Regnase-1 suppresses TCF-1+ precursor exhausted T-cell formation to limit CAR–T-cell responses against ALL. Blood 138, 122–135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Behrens, G. et al. Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nat. Immunol. 22, 1563–1576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, D. et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 11, 1192–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Bandyopadhyay, S., Valdor, R. & Macian, F. Tle4 regulates epigenetic silencing of gamma interferon expression during effector T helper cell tolerance. Mol. Cell. Biol. 34, 233–245 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gogishvili, T. et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes. Blood 130, 2838–2847 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Prommersberger, S. et al. CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Ther. 28, 560–571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Georgiadis, C. et al. Base-edited CAR T cells for combinational therapy against T cell malignancies. Leukemia 35, 3466–3481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Srinivasan, S. et al. Investigation of ALLO-316: a fratricide-resistant allogeneic CAR T targeting CD70 as a potential therapy for the treatment of AML. Blood 136, 23 (2020).

    Article  Google Scholar 

  144. Breman, E. et al. Overcoming target driven fratricide for T cell therapy. Front. Immunol. 9, 2940 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wellhausen, N. et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci. Transl. Med. 15, eadi1145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Di Stasi, A. et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113, 6392–6402 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jin, L. et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat. Commun. 10, 4016 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Li, G. et al. CXCR5 guides migration and tumor eradication of anti-EGFR chimeric antigen receptor T cells. Mol. Ther. Oncolytics 22, 507–517 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Grover, N. S. et al. CD30-directed CAR-T cells co-expressing CCR4 in relapsed/refractory Hodgkin Lymphoma and CD30+ cutaneous T cell lymphoma. Blood 138, 742 (2021).

    Article  Google Scholar 

  151. Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu, X. et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hoogi, S. et al. A TIGIT-based chimeric co-stimulatory switch receptor improves T-cell anti-tumor function. J. Immunother. Cancer 7, 243 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ma, Q. et al. A PD-L1-targeting chimeric switch receptor enhances efficacy of CAR-T cell for pleural and peritoneal metastasis. Signal Transduct. Target. Ther. 7, 380 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Liu, H. et al. CD19-specific CAR T cells that express a PD-1/CD28 chimeric switch-receptor are effective in patients with PD-L1positive B-cell lymphoma. Clin. Cancer Res. 27, 473–484 (2021).

    Article  PubMed  Google Scholar 

  157. Brog, R. A. et al. Superkine IL-2 and IL-33 armored CAR T cells reshape the tumor microenvironment and reduce growth of multiple solid tumors. Cancer Immunol. Res. 10, 962–977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hou, A. J. et al. IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune suppression and potentiate anti-tumor responses in glioblastoma. Neuro Oncol. 26, 1850–1866 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Liu, X. et al. A novel dominant-negative PD-1 armored anti-CD19 CAR T cell is safe and effective against refractory/relapsed B cell lymphoma. Transl. Oncol. 14, 101085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yamamoto, T. N. et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J. Clin. Invest. 129, 1551–1565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Yang, F. et al. Self-delivery of TIGIT-blocking scFv enhances CAR-T immunotherapy in solid tumors.Front. Immunol. 14, 1175920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFV by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–856 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Huang, S. W. et al. BiTE-secreting CAR-γδT as a dual targeting strategy for the treatment of solid tumors. Adv. Sci 10, e2206856 (2023).

    Article  Google Scholar 

  164. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Porter, C. E. et al. Oncolytic adenovirus armed with BiTE, cytokine, and checkpoint inhibitor enables CAR T cells to control the growth of heterogeneous tumors. Mol. Ther. 28, 1251–1262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yin, Y. et al. Locally secreted BiTEs complement CAR T cells by enhancing killing of antigen heterogeneous solid tumors. Mol. Ther. 30, 2537–2553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, G. et al. Fn14-targeted BiTE and CAR-T cells demonstrate potent preclinical activity against glioblastoma. Oncoimmunology 10, 1983306 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Choi, B. D. et al. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N. Engl. J. Med. 390, 1290–1298 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Liu, L. et al. Enhanced CAR-T activity against established tumors by polarizing human T cells to secrete interleukin-9. Nat. Commun. 11, 5902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jaspers, J. E. et al. IL-18-secreting CAR T cells targeting DLL3 are highly effective in small cell lung cancer models. J. Clin. Invest. 133, e166028 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Krenciute, G. et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol. Res. 5, 571–581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kueberuwa, G., Kalaitsidou, M., Cheadle, E., Hawkins, R. E. & Gilham, D. E. CD19 CAR T cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Mol. Ther. Oncolytics 8, 41–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Blaeschke, F. et al. Modular pooled discovery of synthetic knockin sequences to program durable cell therapies. Cell 186, 4216–4234.e33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, X. et al. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. Cancer Cell 40, 1407–1422.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Ohno, M. et al. Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. J. Immunother. Cancer 1, 21 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Johnson, L. R. et al. The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. Cell 184, 4981–4995.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang, J. et al. Co-expression of miR155 or LSD1 shRNA increases the anti-tumor functions of CD19 CAR-T cells. Front. Immunol 12, 811364 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Stepanov, A. V. et al. Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells. Nat. Biomed. Eng. 8, 529–543 (2024).

    Article  CAS  PubMed  Google Scholar 

  182. Micklethwaite, K. P. et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 138, 1391–1405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Elsallab, M. et al. Second primary malignancies after commercial CAR T-cell therapy: analysis of the FDA Adverse Events Reporting System. Blood 143, 2099–2105 (2024).

    Article  CAS  PubMed  Google Scholar 

  184. Ghilardi, G. et al. T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy. Nat. Med. 30, 984–989 (2024).

    Article  CAS  PubMed  Google Scholar 

  185. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Głów, D. et al. LATE–a novel sensitive cell-based assay for the study of CRISPR/Cas9-related long-term adverse treatment effects. Mol. Ther. Methods Clin. Dev. 22, 249–262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Nobles, C. L. et al. IGUIDE: an improved pipeline for analyzing CRISPR cleavage specificity Jin-Soo Kim. Genome Biol. 20, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Donnadieu, E. et al. Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. J. Immunother. Cancer 10, e003486 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Guedan, S. et al. Time 2EVOLVE: predicting efficacy of engineered T-cells—how far is the bench from the bedside?. J. Immunother. Cancer 10, e003487 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. O'Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Wadman, M. FDA no longer needs to require animal tests before human drug trials. Science 379, 127–128 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    Article  PubMed  Google Scholar 

  193. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Diorio, C. et al. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood 140, 619–629 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45, 358–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang, X. et al. Engineering tolerance toward allogeneic CAR-T cells by regulation of MHC surface expression with Human Herpes Virus-8 proteins. Mol. Ther. 29, 718–733 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Bishop, D. C. et al. Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells. Blood 138, 1504–1509 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Wang, B. et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat. Biomed. Eng. 5, 429–440 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Kagoya, Y. et al. Genetic ablation of HLA class I, class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol. Res. 8, 926–936 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Perica, K. et al. HIV immune evasin Nef enhances allogeneic CAR T cell potency. Nature 640, 793–801 (2025).

    Article  CAS  PubMed  Google Scholar 

  201. Grosskopf, A. et al. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Sci. Adv. 8, eabn8264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Frank, A. M. et al. Combining T-cell-specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Adv. 4, 5702–5715 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Nicolai, C. J. et al. In vivo CAR T-cell generation in nonhuman primates using lentiviral vectors displaying a multidomain fusion ligand. Blood 144, 977–987 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. 42, 1684–1692 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Haghikia, A. et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 15, 2542 (2024).

    Google Scholar 

  206. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease—a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  207. Staudt, S. et al. Microbial metabolite-guided CAR T cell engineering enhances anti-tumor immunity via epigenetic-metabolic crosstalk. Preprint at https://www.biorxiv.org/content/10.1101/2024.08.19.608538v1 (2024).

  208. Gottschlich, A. et al. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nat. Biotechnol. 41, 1618–1632 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hort, S. et al. Deciphering and advancing CAR T-cell therapy with single-cell sequencing technologies. Mol. Cancer 9, 1–25 (2022).

    Google Scholar 

  210. Qiu, S. et al. CAR-Toner: an AI-driven approach for CAR tonic signaling prediction and optimization. Cell Res. 34, 386–388 (2023).

    Article  Google Scholar 

  211. Hort, S. et al. Toward rapid, widely available autologous CAR-T cell therapy—artificial intelligence and automation enabling the smart manufacturing hospital. Front. Med. 9, 913287 (2022).

    Article  Google Scholar 

  212. Tousley, A. M. et al. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 615, 507–516 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sharifzadeh, Z. et al. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett. 334, 237–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Li, N., Fu, H., Hewitt, S. M., Dimitrov, D. S. & Ho, M. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc. Natl Acad. Sci. USA 114, E6623–E6631 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. An, N. et al. Anti-multiple myeloma activity of nanobody-based anti-CD38 chimeric antigen receptor T cells. Mol. Pharm. 15, 4577–4588 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. De Munter, S. et al. Nanobody based dual specific CARs. Int. J. Mol. Sci. 19, 403 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Shadman, M. et al. CD20 targeted CAR-T for high-risk B-cell non-Hodgkin lymphomas. Blood 134, 3235 (2019).

    Article  Google Scholar 

  218. Xie, Y. J. et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl Acad. Sci. USA 116, 7624–7631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. McComb, S. et al. Programmable attenuation of antigenic sensitivity for a nanobody-based EGFR chimeric antigen receptor through hinge domain truncation. Front. Immunol. 13, 864868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhang, M. et al. A single-arm, open-label, pilot trial of autologous CD7-CAR-T cells for CD7 positive relapsed and refractory T-lymphoblastic leukemia/lymphoma. Blood 138, 3829 (2021).

    Article  Google Scholar 

  221. Pan, J. et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J. Clin. Oncol. 39, 3340–3351 (2021).

    Article  CAS  PubMed  Google Scholar 

  222. Mo, F. et al. Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Signal Transduct. Target. Ther. 6, 80 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Li, D. et al. Camel nanobody-based B7-H3 CAR-T cells show high efficacy against large solid tumours. Nat. Commun. 14, 5920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hammill, J. A. et al. Designed ankyrin repeat proteins are effective targeting elements for chimeric antigen receptors. J. Immunother. Cancer 3, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Stepanov, A. V. et al. Switchable targeting of solid tumors by BsCAR T cells. Proc. Natl Acad. Sci. USA 119, e2210562119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wang, Y. et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J. Hematol. Oncol. 11, 60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Kubo, H. et al. Development of non-viral, ligand-dependent, EPHB4-specific chimeric antigen receptor T cells for treatment of rhabdomyosarcoma. Mol. Ther. Oncolytics 20, 646–658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Wang, D. et al. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci. Transl. Med. 12, eaaw2672 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Davies, D. M. et al. Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells. Mol. Med. 18, 565–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Schmidts, A. et al. Rational design of a trimeric April-based CAR-binding domain enables efficient targeting of multiple myeloma. Blood Adv. 3, 3248–3260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wong, D. P. et al. A BAFF ligand-based CAR-T cell targeting three receptors and multiple B cell cancers. Nat. Commun. 13, 217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Vedvyas, Y. et al. Manufacturing and preclinical validation of CAR T cells targeting ICAM-1 for advanced thyroid cancer therapy. Sci. Rep. 9, 10634 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Urbanska, K., Stashwick, C., Poussin, M. & Powell, D. J. Follicle-stimulating hormone receptor as a target in the redirected T-cell therapy for cancer. Cancer Immunol. Res. 3, 1130–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zoine, J. T. et al. Thrombopoietin-based CAR-T cells demonstrate in vitro and in vivo cytotoxicity to MPL positive acute myelogenous leukemia and hematopoietic stem cells. Gene Ther. 29, 1–12 (2022).

    Article  CAS  PubMed  Google Scholar 

  235. Hasegawa, A. et al. Mutated GM-CSF-based CAR-T cells targeting CD116/CD131 complexes exhibit enhanced anti-tumor effects against acute myeloid leukaemia. Clin. Transl. Immunol. 10, e1282 (2021).

    Article  CAS  Google Scholar 

  236. Chinsuwan, T. et al. Ligand-based, piggyBac-engineered CAR-T cells targeting EGFR are safe and effective against non-small cell lung cancers. Mol. Ther. Oncolytics 31, 100728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. D’aloia, M. M. et al. T lymphocytes engineered to express a CD16-chimeric antigen receptor redirect T-cell immune responses against immunoglobulin G-opsonized target cells. Cytotherapy 18, 278–290 (2016).

    Article  PubMed  Google Scholar 

  238. Wu, M. R., Zhang, T., DeMars, L. R. & Sentman, C. L. B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Ther. 22, 675–684 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Zhang, T., Wu, M.-R. & Sentman, C. L. An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J. Immunol. 189, 2290–2299 (2012).

    Article  CAS  PubMed  Google Scholar 

  240. Butler, S. E. et al. Engineering a natural ligand-based CAR: directed evolution of the stress-receptor NKp30. Cancer Immunol. Immunother. 71, 165–176 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. Quintarelli, C. et al. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology 7, e1433518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Hombach, A. A., Heiders, J., Foppe, M., Chmielewski, M. & Abken, H. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+ T cells. Oncoimmunology 1, 458–466 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Pulè, M. A. et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol. Ther. 12, 933–941 (2005).

    Article  PubMed  Google Scholar 

  244. M, G. et al. CD28.OX40 co-stimulatory combination is associated with long in vivo persistence and high activity of CAR.CD30 T-cells. Haematologica 106, 987–999 (2021).

    Google Scholar 

  245. Zhang, H. et al. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci. Transl. Med. 13, eaba7308 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Duong, C. P. M. et al. Engineering T cell function using chimeric antigen receptors identified using a DNA library approach. PLoS One 8, e63037 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Han, Y., Xie, W., Song, D. G. & Powell, D. J. Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells. J. Hematol. Oncol. 11, 92 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Yu, L. et al. GD2-specific chimeric antigen receptor-modified T cells for the treatment of refractory and/or recurrent neuroblastoma in pediatric patients. J. Cancer Res. Clin. Oncol. 148, 2643–2652 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Posey, A. D. & June, C. H. 211. CD2, the first identified T cell co-stimulator, demonstrates more effective chimeric antigen receptor activity over CD28 and 4-1BB. Mol. Ther. 10.1016/S1525-0016(16)33816-3 (2015).

  250. Weng, J. et al. A novel generation 1928zT2 CAR T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia. J. Hematol. Oncol. 11, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Lai, Y. et al. Toll-like receptor 2 costimulation potentiates the antitumor efficacy of CAR T Cells. Leukemia 32, 801–808 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Nair, S. et al. Functional improvement of chimeric antigen receptor through intrinsic interleukin-15Rα signaling. Curr. Gene Ther. 19, 40–53 (2018).

    Article  Google Scholar 

  253. Ma, Y.-J. et al. Successful application of PD-1 knockdown CLL-1 CAR-T therapy in two AML patients with post-transplant relapse and failure of anti-CD38 CAR-T cell treatment. Am. J. Cancer Res 12, 615–621 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhou, J. E. et al. ShRNA-mediated silencing of PD-1 augments the efficacy of chimeric antigen receptor T cells on subcutaneous prostate and leukemia xenograft. Biomed. Pharmacother. 137, 111339 (2021).

    Article  CAS  PubMed  Google Scholar 

  255. Liu, G., Rui, W., Zhao, X. & Lin, X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell. Mol. Immunol. 18, 1085–1095 (2021).

  256. Simon, B. et al. Enhancing lentiviral transduction to generate melanoma-specific human T cells for cancer immunotherapy. J. Immunol. Methods 472, 55–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  257. Lee, Y. H. et al. PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CAR T cells. Mol. Ther. 30, 579–592 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Jafarzadeh, L. et al. Targeted knockdown of Tim3 by short hairpin RNAs improves the function of anti-mesothelin CAR T cells. Mol. Immunol. 139, 1–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. Beavis, P. A. et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Invest. 127, 929–941 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Jain, N. et al. TET2 guards against unchecked BATF3-induced CAR T cell expansion. Nature 615, 315–322 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. López-Cobo, S. et al. SUV39H1 ablation enhances long-term CAR T function in solid tumors. Cancer Discov. 14, 120–141 (2024).

    Article  PubMed  Google Scholar 

  262. Mai, D. et al. Combined disruption of T cell inflammatory regulators regnase-1 and roquin-1 enhances antitumor activity of engineered human T cells. Proc. Natl Acad. Sci. USA 120, e2218632120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Craddock, J. A. et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 33, 780–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473–488.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hu, W. et al. Chimeric antigen receptor modified T cell (CAR-T) co-expressed with ICOSL-41BB promote CAR-T proliferation and tumor rejection. Biomed. Pharmacother. 118, 109333 (2019).

    Article  CAS  PubMed  Google Scholar 

  266. Kalbasi, A. et al. Publisher Correction: Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 612, E10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Chen, C. et al. Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in gastric cancer. Oncoimmunology 10, 1901434 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Supimon, K. et al. Cytotoxic activity of anti-mucin 1 chimeric antigen receptor T cells expressing PD-1-CD28 switch receptor against cholangiocarcinoma cells. Cytotherapy 25, 148–161 (2023).

    Article  CAS  PubMed  Google Scholar 

  269. Zhao, S. et al. Switch receptor T3/28 improves long-term persistence and antitumor efficacy of CAR-T cells. J. Immunother. Cancer 9, e003176 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Beck, C. et al. Development of a TGFβ–IL-2/15 switch receptor for use in adoptive cell therapy. Biomedicines 11, 459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Leen, A. M. et al. Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol. Ther. 22, 1211–1220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Lange, S. et al. A chimeric GM-CSF/IL18 receptor to sustain CAR T-cell function. Cancer Discov. 11, 1661–1671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Durgin, J. S. et al. Enhancing CAR T function with the engineered secretion of C. perfringens neuraminidase. Mol. Ther. 30, 1201–1214 (2022).

    Article  CAS  PubMed  Google Scholar 

  274. Qu, Y. et al. Adenosine deaminase 1 overexpression enhances the antitumor efficacy of chimeric antigen receptor-engineered T cells. Hum. Gene Ther. 33, 223–236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Bai, Y. et al. Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA. Cell Discov. 1, 15040 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Xie, Y. J. et al. Improved antitumor efficacy of chimeric antigen receptor T cells that secrete single-domain antibody fragments. Cancer Immunol. Res. 8, 518–529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Suarez, E. R. et al. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 7, 34341–34355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Zhang, Y. et al. Chimeric antigen receptor T cells engineered to secrete CD40 agonist antibodies enhance antitumor efficacy. J. Transl. Med. 19, 82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yi, Y. et al. CRISPR-edited CART with GM-CSF knockout and auto secretion of IL6 and IL1 blockers in patients with hematologic malignancy. Cell Discov. 7, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Cao, G. et al. GPC3-targeted CAR-T cells secreting B7H3-targeted BiTE exhibit potent cytotoxicity activity against hepatocellular carcinoma cell in the in vitro assay. Biochem. Biophys. Rep. 31, 101324 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Wehrli, M. et al. Abstract 569: Mesothelin CAR T cells secreting FAP specific T cell engaging molecule (TEAM) target pancreatic cancer and its tumor microenvironment (TME). Cancer Res. 82, 569 (2022).

    Article  Google Scholar 

  282. Luo, H. et al. Coexpression of IL7 and CCL21 increases efficacy of CAR-T cells in solid tumors without requiring preconditioned lymphodepletion. Clin. Cancer Res. 26, 5494–5505 (2020).

    Article  CAS  PubMed  Google Scholar 

  283. Lei, W. et al. Safety and feasibility of anti-CD19 CAR T cells expressing inducible IL-7 and CCL19 in patients with relapsed or refractory large B-cell lymphoma. Cell Discov. 10, 5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Swan, S. L. et al. IL7 and IL7 Flt3L co-expressing CAR T cells improve therapeutic efficacy in mouse EGFRvIII heterogeneous glioblastoma. Front. Immunol 14, 1085547 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Liu, Y. et al. Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted chimeric antigen receptor-engineered T cells in hepatocellular carcinoma. J. Immunol. 203, 198–207 (2019).

    Article  CAS  PubMed  Google Scholar 

  286. Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Avanzi, M. P. et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep. 23, 2130–2141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wang, D., Shao, Y., Zhang, X., Lu, G. & Liu, B. IL-23 and PSMA-targeted duo-CAR T cells in prostate cancer eradication in a preclinical model. J. Transl. Med 18, 23 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Li, X., Daniyan, A. F., Lopez, A. V., Purdon, T. J. & Brentjens, R. J. Cytokine IL-36γ improves CAR T-cell functionality and induces endogenous antitumor response. Leukemia 35, 506–521 (2021).

    Article  CAS  PubMed  Google Scholar 

  290. Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by the Innovative Medicines Initiative 2 Joint Undertaking, from the European Union’s Horizon 2020 research and innovation programme and EFPIA (grant agreement no. 116026, T2EVOLVE to M.H. and M.L.), the Wilhelm-Sander-Stiftung (grant no. 2022.134.1 to A.V., K.Z.-M. and M.L.), ERA-NET TRANSCAN-3 (EC co-funded call 2021, SmartCAR-T to T.T.N., J.C., M.H., K.Z.-M. and M.L.), the Paula & Rodger Riney Foundation (to M.H. and M.L.), IZKF Würzburg (S-511 to S.S. and M.L., C-543 to M.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, TRR 221 (subproject A03 to M.H., H.E. and M.L.); TRR338 (subproject A02 to M.H. and M.L., C04 to M.L.); and CRC1525 (seed grant to M.L.)), the Bavarian Cancer Research Center (BZKF; TANGO to M.L. and M.H.), INCA Award by Novartis (to M.L.), the Fonds de la Recherche Scientifique (Postdoctoral fellowship to T.T.N. and funding to J.C.), Fondation Contre le Cancer (C/2020/1447), Université de Liège (J.C.) and FIRS CHU de Liège (J.C.).

Author information

Authors and Affiliations

Authors

Contributions

Article design was carried out by T.T.N. and M.L. Figures and tables were produced by M.J., A.B. and T.T.N. The paper was written by C.G., J.J.M., J.C., S.S., K.Z.-M., T.T.N. and M.L. Editing was carried out by C.G., J.J.M., M.H., P.H. and M.L.

Corresponding author

Correspondence to Maik Luu.

Ethics declarations

Competing interests

M.L. and M.H. are listed as inventors on patent application WO2021/058811A1. M.H. is listed as an inventor on patent applications and granted patents related to CAR T technologies that have been filed by the Fred Hutchinson Cancer Research Center, Seattle, WA and by the University of Würzburg, Würzburg, Germany. M.H. is a co-founder and equity owner of T-CURX GmbH, Würzburg, Germany. M.H. received honoraria from Celgene/BMS, Janssen, Kite/Gilead.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Ho, P., Staudt, S. et al. Fine tuning towards the next generation of engineered T cells. Nat. Biomed. Eng 9, 1610–1631 (2025). https://doi.org/10.1038/s41551-025-01492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-025-01492-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer