Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural mechanisms underlying intracortical microstimulation for sensory restoration

Abstract

Sensation plays a pivotal role in the orchestration of our daily lives. Intracortical microstimulation (ICMS) can elicit artificial sensations in persons who have lost sensation due to neurological injury or disease. Despite ongoing clinical studies to assess the safety and efficacy of ICMS, the mechanisms underlying neural activation by ICMS and their implications for perception are not well understood. This Review delves into the current understanding of ICMS mechanisms, drawing parallels with physiological sensory processing in the cortex. We explore emerging approaches and note challenges to current technologies, including resolution and the tissue response to electrode insertion. We conclude by highlighting the basic principles of ICMS, lingering questions and important focus areas for continued development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic mechanisms of ICMS.
Fig. 2: Computational model of ICMS reveals current–distance relationships.
Fig. 3: Permanent and temporary depression of neural activity induced by ICMS.
Fig. 4: Cortical physiology and electrode insertions.
Fig. 5: Emerging approaches and technologies for ICMS.

Similar content being viewed by others

References

  1. Foerster, O. Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare. J. Psychol. Neurol. 39, 463–485 (1929).

    Google Scholar 

  2. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  3. Dobelle, W. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 46, 3–9 (2000).

    Article  PubMed  Google Scholar 

  4. Dobelle, W. H. & Mladejovsky, M. G. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J. Physiol. 243, 553–576 (1974).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dobelle, W. H., Quest, D. O., Antunes, J. L., Roberts, T. S. & Girvin, J. P. Artificial vision for the blind by electrical stimulation of the visual cortex. Neurosurgery 5, 521–527 (1979).

    Article  PubMed  Google Scholar 

  6. Brindley, G. S. & Lewin, W. S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196, 479–493 (1968).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Talalla, A., Bullara, L. & Pudenz, R. Electrical stimulation of the human visual cortex preliminary report. Can. J. Neurol. Sci. 1, 236–238 (1974).

    Article  PubMed  Google Scholar 

  8. Tolias, A. S. et al. Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron 48, 901–911 (2005).

    Article  PubMed  Google Scholar 

  9. Girvin, J. P. Current status of artificial vision by electrocortical stimulation. Can. J. Neurol. Sci. 15, 58–62 (1988).

    Article  PubMed  Google Scholar 

  10. Bak, M. et al. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med. Biol. Eng. Comput. 28, 257–259 (1990).

    Article  PubMed  Google Scholar 

  11. Schmidt, E. M. et al. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119, 507–522 (1996).

    Article  PubMed  Google Scholar 

  12. Flesher, S. N. et al. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8, 361ra141 (2016).

    Article  PubMed  Google Scholar 

  13. Armenta Salas, M. et al. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. eLife 7, e32904 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fifer, M. S. et al. Intracortical somatosensory stimulation to elicit fingertip sensations in an individual with spinal cord injury. Neurology 98, E679–E687 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greenspon, C. M. et al. Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex. Nat. Biomed. Eng. 9, 935–951 (2025).

    Article  PubMed  Google Scholar 

  16. Fernández, E. et al. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex. J. Clin. Invest. 131, e151331 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen, X., Wang, F., Fernandez, E. & Roelfsema, P. R. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370, 1191–1196 (2020).

    Article  PubMed  Google Scholar 

  18. Beauchamp, M. S. et al. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 181, 774–783.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Christie, B. et al. Perceived timing of cutaneous vibration and intracortical microstimulation of human somatosensory cortex. Brain Stimul. 15, 881–888 (2022).

    Article  PubMed  Google Scholar 

  20. Osborn, L. E. et al. Intracortical microstimulation of somatosensory cortex enables object identification through perceived sensations. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 6259–6262 (IEEE, 2021).

  21. Hughes, C. L., Flesher, S. N. & Gaunt, R. A. Effects of stimulus pulse rate on somatosensory adaptation in the human cortex. Brain Stimul. 15, 987–995 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hughes, C. L. et al. Perception of microstimulation frequency in human somatosensory cortex. eLife 10, e65128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hughes, C. et al. Neural stimulation and recording performance in human sensorimotor cortex over 1500 days. J. Neural Eng. 18, 045012 (2021).

  24. Flesher, S. N. et al. A brain–computer interface that evokes tactile sensations improves robotic arm control. Science 372, 831–836 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shelchkova, N. D. et al. Microstimulation of human somatosensory cortex evokes task-dependent, spatially patterned responses in motor cortex. Nat. Commun. 14, 7270 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hughes, C. L., Herrera, A., Gaunt, R. & Collinger, J. Bidirectional brain–computer interfaces. Handb. Clin. Neurol. 168, 163–181 (2020).

    Article  PubMed  Google Scholar 

  27. Bjånes, D. A. et al. Charge density of multi-channel intra-cortical micro-stimulation modulates intensity and naturalness of evoked somatosensations. J. Neural Eng. 22, 066025 (2025).

    Article  Google Scholar 

  28. Hughes, C. Biomimetic Intracortical Microstimulation in Human Somatosensory Cortex for a Bidirectional Brain–Computer Interface. PhD thesis, Univ. Pittsburgh (2021).

  29. Hobbs, T. G. et al. Biomimetic stimulation patterns drive natural artificial touch percepts using intracortical microstimulation in humans. J. Neural Eng. 22, 036014 (2025).

    Article  Google Scholar 

  30. Brocker, D. T. & Grill, W. M. in Handbook of Clinical Neurology Vol. 116 (eds Lozano, A. M. & Hallett, M.) 3–18 (Elsevier, 2013).

  31. Gulledge, A. T., Kampa, B. M. & Stuart, G. J. Synaptic integration in dendritic trees. J. Neurobiol. 64, 75–90 (2005).

    Article  PubMed  Google Scholar 

  32. Tripathy, S. J., Savitskaya, J., Burton, S. D., Urban, N. N. & Gerkin, R. C. NeuroElectro: a window to the world’s neuron electrophysiology data. Front. Neuroinform. 8, 40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koch, C., Rapp, M. & Segev, I. A brief history of time (constants). Cereb. Cortex 6, 93–101 (1996).

    Article  PubMed  Google Scholar 

  34. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article  PubMed  Google Scholar 

  35. Wikswo, J. P., Lin, S. F. & Abbas, R. A. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys. J. 69, 2195–2210 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stephanova, D. I. & Mileva, K. Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations. Biol. Cybern. 83, 161–167 (2000).

    Article  PubMed  Google Scholar 

  37. McIntyre, C. C. & Grill, W. M. Selective microstimulation of central nervous system neurons. Ann. Biomed. Eng. 28, 219–233 (2000).

    Article  PubMed  Google Scholar 

  38. Rattay, F. Analysis of models for external stimulation of axons. IEEE Trans. Biomed. Eng. BME-33, 974–977 (1986).

    Article  Google Scholar 

  39. Geddes, L. A. Accuracy limitations of chronaxie values. IEEE Trans. Biomed. Eng. 51, 176–181 (2004).

    Article  PubMed  Google Scholar 

  40. IRNICH, W. The chronaxie time and its practical importance. Pacing Clin. Electrophysiol. 3, 292–301 (1980).

    Article  PubMed  Google Scholar 

  41. Stoney, S. D., Thompson, W. D. & Asanuma, H. Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J. Neurophysiol. 31, 659–669 (1968).

    Article  PubMed  Google Scholar 

  42. Kumaravelu, K., Sombeck, J., Miller, L. E., Bensmaia, S. J. & Grill, W. M. Stoney vs. Histed: quantifying the spatial effects of intracortical microstimulation. Brain Stimul. 15, 141–151 (2022).

    Article  PubMed  Google Scholar 

  43. Dalgleish, H. W. P. et al. How many neurons are sufficient for perception of cortical activity? eLife 9, e58889 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Urdaneta, M. E., Kunigk, N. G., Delgado, F., Fried, S. I. & Otto, K. J. Layer-specific parameters of intracortical microstimulation of the somatosensory cortex. J. Neural Eng. 18, 55007 (2021).

    Article  Google Scholar 

  45. Altman, K. W. & Plonsey, R. Analysis of the longitudinal and radial resistivity measurements of the nerve trunk. Ann. Biomed. Eng. 17, 313–324 (1989).

    Article  PubMed  Google Scholar 

  46. Gustafsson, B. & Jankowska, E. Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. J. Physiol. 258, 33–61 (1976).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jankowska, E., Padel, Y. & Tanaka, R. The mode of activation of pyramidal tract cells by intracortical stimuli. J. Physiol. 249, 617–636 (1975).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grill, W. M., Cantrell, M. B. & Robertson, M. S. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation. J. Comput. Neurosci. 24, 81–93 (2008).

    Article  PubMed  Google Scholar 

  49. Tehovnik, E. J., Tolias, A. S., Sultan, F., Slocum, W. M. & Logothetis, N. K. Direct and indirect activation of cortical neurons by electrical microstimulation. J. Neurophysiol. 96, 512–521 (2006).

    Article  PubMed  Google Scholar 

  50. Tehovnik, E. J. Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods 65, 1–17 (1996).

    Article  PubMed  Google Scholar 

  51. Baldissera, F., Lundberg, A. & Udo, M. Stimulation of pre- and postsynaptic elements in the red nucleus. Exp. Brain Res. 15, 151–167 (1972).

    Article  PubMed  Google Scholar 

  52. Butovas, S. & Schwarz, C. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J. Neurophysiol. 90, 3024–3039 (2003).

    Article  PubMed  Google Scholar 

  53. Romo, R., Hernández, A., Zainos, A. & Salinas, E. Somatosensory discrimination based on cortical microstimulation. Nature 392, 387–390 (1998).

    Article  PubMed  Google Scholar 

  54. Romo, R., Hernández, A., Zainos, A., Brody, C. D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000).

    Article  PubMed  Google Scholar 

  55. Binzegger, T., Douglas, R. J. & Martin, K. A. C. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Swanson, O. K. & Maffei, A. From hiring to firing: activation of inhibitory neurons and their recruitment in behavior. Front. Mol. Neurosci. 12, 168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Blakemore, C. & Tobin, E. A. Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp. Brain Res. 15, 439–440 (1972).

    Article  PubMed  Google Scholar 

  58. Logothetis, N. K., Kayser, C. & Oeltermann, A. In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55, 809–823 (2007).

    Article  PubMed  Google Scholar 

  59. Paulk, A. C. et al. Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parameters. Brain Stimul. 15, 491–508 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eles, J. R. & Kozai, T. D. Y. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials 234, 119767 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).

    Article  PubMed  Google Scholar 

  63. Flesher, S. N. et al. Restoring touch through intracortical microstimulation of human somatosensory cortex. In New Generation of Circuits and Systems (NGCAS) 185–188 (IEEE, 2017).

  64. McIntyre, C. C. & Grill, W. M. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 88, 1592–1604 (2002).

    Article  PubMed  Google Scholar 

  65. Grill, W. M. Model-based analysis and design of waveforms for efficient neural stimulation. Prog. Brain Res. 222, 147–162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stieger, K. C., Eles, J. R., Ludwig, K. A. & Kozai, T. D. Y. In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. J. Neurosci. Res. 98, 2072–2095 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stieger, K. C., Eles, J. R., Ludwig, K. A. & Kozai, T. D. Y. Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. J. Neural Eng. 19, 026024 (2022).

    Article  Google Scholar 

  68. Bari, B. A., Ollerenshaw, D. R., Millard, D. C., Wang, Q. & Stanley, G. B. Behavioral and electrophysiological effects of cortical microstimulation parameters. PLoS ONE 8, e82170 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karatum, O., Han, M., Erdogan, E. T., Karamursel, S. & Nizamoglu, S. Physical mechanisms of emerging neuromodulation modalities. J. Neural Eng. 20, 031001 (2023).

  70. Plonsey, R. & Barr, R. C. Bioelectricity: A Quantitative Approach (Springer, 2007).

  71. Eles, J. R., Stieger, K. C. & Kozai, T. D. Y. The temporal pattern of intracortical microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons. J. Neural Eng. 18, 15001 (2021).

    Article  Google Scholar 

  72. Michelson, N. J., Eles, J. R., Vazquez, A. L., Ludwig, K. A. & Kozai, T. D. Y. Calcium activation of cortical neurons by continuous electrical stimulation: frequency dependence, temporal fidelity, and activation density. J. Neurosci. Res. 97, 620–638 (2019).

    Article  PubMed  Google Scholar 

  73. Callier, T., Brantly, N. W., Caravelli, A. & Bensmaia, S. J. The frequency of cortical microstimulation shapes artificial touch. Proc. Natl Acad. Sci. USA 117, 1191–1200 (2020).

    Article  PubMed  Google Scholar 

  74. Wu, G. K. et al. Amplitude- and frequency-dependent activation of layer II/III neurons by intracortical microstimulation. iScience 26, 108140 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hughes, C. L., Stieger, K. C., Chen, K., Vazquez, A. L. & Kozai, T. D. Y. Spatiotemporal properties of cortical excitatory and inhibitory neuron activation by sustained and bursting electrical microstimulation. iScience 28, 112707 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  76. O’Doherty, J. E. et al. Active tactile exploration using a brain–machine–brain interface. Nature 479, 228–231 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. O’Doherty, J. E., Shokur, S., Medina, L. E., Lebedev, M. A. & Nicolelis, M. A. L. Creating a neuroprosthesis for active tactile exploration of textures. Proc. Natl Acad. Sci. USA 116, 21821–21827 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Friedman, R. M., Chen, L. M. & Roe, A. W. Modality maps within primate somatosensory cortex. Proc. Natl Acad. Sci. USA 101, 12724–12729 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Prsa, M., Morandell, K., Cuenu, G. & Huber, D. Feature-selective encoding of substrate vibrations in the forelimb somatosensory cortex. Nature 567, 384–388 (2019).

  80. Wang, L. & Yau, J. M. Signatures of vibration frequency tuning in human neocortex. Preprint at bioRxiv https://doi.org/10.1101/2021.10.03.462923 (2021).

  81. Chen, L. M., Friedman, R. M., Ramsden, B. M., LaMotte, R. H. & Roe, A. W. Fine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J. Neurophysiol. 86, 3011–3029 (2001).

    Article  PubMed  Google Scholar 

  82. Sur, M., Wall, J. T. & Kaas, J. H. Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b somatosensory cortex in monkeys. J. Neurophysiol. 51, 724–744 (1984).

    Article  PubMed  Google Scholar 

  83. Saal, H. P. & Bensmaia, S. J. Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci. 37, 689–697 (2014).

    Article  PubMed  Google Scholar 

  84. Grill, W. M. Temporal pattern of electrical stimulation is a new dimension of therapeutic innovation. Curr. Opin. Biomed. Eng. 8, 1–6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hughes, C. L. & Gaunt, R. A. Changes in interpulse spacing changes tactile perception of microstimulation in human somatosensory cortex. In International IEEE/EMBS Conference on Neural Engineering, NER 660–663 (IEEE, 2021).

  86. Birznieks, I. & Vickery, R. M. Spike timing matters in novel neuronal code involved in vibrotactile frequency perception. Curr. Biol. 27, 1485–1490.e2 (2017).

    Article  PubMed  Google Scholar 

  87. Ng, K. K. W. et al. Perceived frequency of aperiodic vibrotactile stimuli depends on temporal encoding. In International Conference on Human Haptic Sensing and Touch Enabled Computer Application Lecture Notes in Computer Science Vol. 10893 (eds Prattichizzo, D. et al.) 199–208 (Springer, 2018).

  88. Aksöz, E. A., Laubacher, M., Binder-Macleod, S. & Hunt, K. J. Effect of stochastic modulation of inter-pulse interval during stimulated isokinetic leg extension. Eur. J. Transl. Myol. 26, 6160 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Aksöz, E. A. et al. Stochastically modulated inter-pulse intervals to increase the efficiency of functional electrical stimulation cycling. J. Rehabil. Assist. Technol. Eng. 5, 2055668318767364 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Bloodworth, D. M. et al. Comparison of stochastic vs. conventional transcutaneous electrical stimulation for pain modulation in patients with electromyographically documented radiculopathy. Am. J. Phys. Med. Rehabil. 83, 584–591 (2004).

    Article  PubMed  Google Scholar 

  91. Rubinstein, J. T. & Hong, R. Signal coding in cochlear implants: exploiting stochastic effects of electrical stimulation. Ann. Otol. Rhinol. Laryngol. 112, 14–19 (2003).

    Article  Google Scholar 

  92. Tan, D. W. et al. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. McCreery, D. B., Bullara, L. A. & Agnew, W. F. Neuronal activity evoked by chronically implanted intracortical microelectrodes. Exp. Neurol. 92, 147–161 (1986).

    Article  PubMed  Google Scholar 

  94. Agnew, W. F. & McCreery, D. B. Considerations for safety with chronically implanted nerve electrodes. Epilepsia 31, S27–S32 (1990).

    Article  PubMed  Google Scholar 

  95. McCreery, D., Pikov, V. & Troyk, P. R. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J. Neural Eng. 7, 036005 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Agnew, W. F., Yuen, T. G. H., McCreery, D. B. & Bullara, L. A. Histopathologic evaluation of prolonged intracortical electrical stimulation. Exp. Neurol. 92, 162–185 (1986).

    Article  PubMed  Google Scholar 

  97. McCreery, D. B., Agnew, W. F., Yuen, T. G. H. & Bullara, L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 37, 996–1001 (1990).

    Article  PubMed  Google Scholar 

  98. McCreery, D. B., Agnew, W. F. & Bullara, L. A. The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat. Ann. Biomed. Eng. 30, 107–119 (2002).

    Article  PubMed  Google Scholar 

  99. Dong, Q. et al. Stability assessment of ultramicroelectrode arrays in neural stimulation: an electrochemical impedance spectroscopy analysis. In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1–4 (IEEE, 2024).

  100. McCreery, D. B., Yuen, T. G. H., Agnew, W. F. & Bullara, L. A. A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes. IEEE Trans. Biomed. Eng. 44, 931–939 (1997).

    Article  PubMed  Google Scholar 

  101. Berglund, U. & Berglund, B. Adaption and recovery in vibrotactile perception. Percept. Mot. Skills 30, 843–853 (1970).

    Article  PubMed  Google Scholar 

  102. Hollins, M., Goble, A. K., Whitsel, B. L. & Tommerdahl, M. Time course and action spectrum of vibrotactile adaptation. Somatosens. Mot. Res. 7, 205–221 (1990).

    Article  PubMed  Google Scholar 

  103. Whitmire, C. J. & Stanley, G. B. Rapid sensory adaptation redux: a circuit perspective. Neuron 92, 298–315 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Guo, Z., Feng, Z., Wang, Y. & Wei, X. Simulation study of intermittent axonal block and desynchronization effect induced by high-frequency stimulation of electrical pulses. Front. Neurosci. 12, 858 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sombeck, J. et al. Characterizing the short-latency evoked response to intracortical microstimulation across a multi-electrode array. J. Neural Eng. 19, 026044 (2022).

  106. Hughes, C. & Kozai, T. Dynamic amplitude modulation of microstimulation evokes biomimetic onset and offset transients and reduces depression of evoked calcium responses in sensory cortices. Brain Stimul. 16, 939–965 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dadarlat, M. C., Sun, Y. J. & Stryker, M. P. Activity-dependent recruitment of inhibition and excitation in the awake mammalian cortex during electrical stimulation. Neuron 112, 821–834.e4 (2024).

  108. Suematsu, N., Vazquez, A. L. & Kozai, T. D. Y. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. J. Neural Eng. 21, 026033 (2024).

    Article  PubMed Central  Google Scholar 

  109. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Roux, F.-E., Djidjeli, I. & Durand, J.-B. Functional architecture of the somatosensory homunculus detected by electrostimulation. J. Physiol. 596, 941–956 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Penfield, W. & Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain 692–738 (Little Brown, 1954).

  112. Sur, M., Wall, J. T. & Kaas, J. H. Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212, 1059–1061 (1981).

    Article  PubMed  Google Scholar 

  113. Kaas, J. H., Nelson, R. J., Sur, M., Lin, C. S. & Merzenich, M. M. Multiple representations of the body within the primary somatosensory cortex of primates. Science 204, 521–523 (1979).

    Article  PubMed  Google Scholar 

  114. McMullen, D. P. et al. Novel intraoperative online functional mapping of somatosensory finger representations for targeted stimulating electrode placement. J. Neurosurg. https://doi.org/10.3171/2020.9.JNS202675 (2021).

  115. Mountcastle, V. B. The columnar organization of the neocortex. Brain 120, 701–722 (1997).

    Article  PubMed  Google Scholar 

  116. Hubel, D. H. & Wiesel, T. N. Shape and arrangement of columns in cat’s striate cortex. J. Physiol. 165, 559–568 (1963).

    Article  PubMed  PubMed Central  Google Scholar 

  117. DeYoe, E. A., Lewine, J. D. & Doty, R. W. Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J. Neurophysiol. 94, 3443–3450 (2005).

    Article  PubMed  Google Scholar 

  118. Tehovnik, E. J. & Slocum, W. M. Depth-dependent detection of microampere currents delivered to monkey V1. Eur. J. Neurosci. 29, 1477–1489 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Millard, D. C., Whitmire, C. J., Gollnick, C. A., Rozell, C. J. & Stanley, G. B. Electrical and optical activation of mesoscale neural circuits with implications for coding. J. Neurosci. 35, 15702–15715 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Narayanan, R. T., Udvary, D. & Oberlaender, M. Cell type-specific structural organization of the six layers in rat barrel cortex. Front. Neuroanat. 11, 91 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Obermayer, J. et al. Lateral inhibition by Martinotti interneurons is facilitated by cholinergic inputs in human and mouse neocortex. Nat. Commun. 9, 4101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Clark, G. A., Ledbetter, N. M., Warren, D. J. & Harrison, R. R. Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays. In Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 4641–4644 (IEEE, 2011).

  123. Wendelken, S. et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J. Neuroeng. Rehabil. 14, 121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhao, Z. et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat. Biomed. Eng. 7, 520–532 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Orlemann, C. et al. Flexible polymer electrodes for stable prosthetic visual perception in mice. Adv. Health. Mater. 13, e2304169 (2024).

    Article  Google Scholar 

  126. Lycke, R. et al. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes. Cell Rep. 42, 112554 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Jadi, M. P. & Sejnowski, T. J. Regulating cortical oscillations in an inhibition-stabilized network. Proc. IEEE 102, 830–842 (2014).

    Article  Google Scholar 

  128. Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D. & Ferster, D. Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62, 578–592 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. O’Rawe, J. F. et al. Excitation creates a distributed pattern of cortical suppression due to varied recurrent input. Neuron 111, 4086–4101.e5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rich, S., Hutt, A., Skinner, F. K., Valiante, T. A. & Lefebvre, J. Neurostimulation stabilizes spiking neural networks by disrupting seizure-like oscillatory transitions. Sci. Rep. 10, 15408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Osorio, I. et al. Automated seizure abatement in humans using electrical stimulation. Ann. Neurol. 57, 258–268 (2005).

    Article  PubMed  Google Scholar 

  132. Velasco, A. L. et al. Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia 48, 1895–1903 (2007).

    Article  PubMed  Google Scholar 

  133. Aberra, A. S., Peterchev, A. V. & Grill, W. M. Biophysically realistic neuron models for simulation of cortical stimulation. J. Neural Eng. 15, 066023 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Yavorska, I. & Wehr, M. Somatostatin-expressing inhibitory interneurons in cortical circuits. Front. Neural Circuits 10, 76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ma, Y., Hu, H. & Agmon, A. Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype. J. Neurosci. 32, 983–988 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–284 (1998).

    Article  PubMed  Google Scholar 

  137. Mruczek, R. E. B. & Sheinberg, D. L. Stimulus selectivity and response latency in putative inhibitory and excitatory neurons of the primate inferior temporal cortex. J. Neurophysiol. 108, 2725–2736 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li, L. Y. et al. Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex. Cereb. Cortex 25, 1782–1791 (2015).

    Article  PubMed  Google Scholar 

  139. Jang, H. J. et al. Distinct roles of parvalbumin and somatostatin interneurons in gating the synchronization of spike times in the neocortex. Sci. Adv. 6, eaay5333 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Goldberg, E. M. et al. K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron 58, 387–400 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Erisir, A., Lau, D., Rudy, B. & Leonard, C. S. Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiol. 82, 2476–2489 (1999).

    Article  PubMed  Google Scholar 

  143. Rudy, B. et al. Contributions of Kv3 channels to neuronal excitability. Ann. N. Y. Acad. Sci. 868, 304–343 (1999).

    Article  PubMed  Google Scholar 

  144. Kawaguchi, Y. & Kubota, Y. Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J. Neurosci. 16, 2701–2715 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  PubMed  Google Scholar 

  146. Benardo, L. S. Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro. J. Physiol. 476, 203–215 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mateo, C. et al. In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition. Curr. Biol. 21, 1593–1602 (2011).

    Article  PubMed  Google Scholar 

  148. Avermann, M., Tomm, C., Mateo, C., Gerstner, W. & Petersen, C. C. H. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J. Neurophysiol. 107, 3116–3134 (2012).

    Article  PubMed  Google Scholar 

  149. Li, N. et al. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 8, e48622 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Margalit, S. N. & Slovin, H. Spatio-temporal activation patterns of neuronal population evoked by optostimulation and the comparison to electrical microstimulation. Sci. Rep. 13, 12689 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

  153. Chen, K., Wellman, S. M., Yaxiaer, Y., Eles, J. R. & Kozai, T. D. In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. Biomaterials 268, 120526 (2021).

    Article  PubMed  Google Scholar 

  154. Roitbak, A. I. & Fanardjian, V. V. Depolarization of cortical glial cells in response to electrical stimulation of the cortical surface. Neuroscience 6, 2529–2537 (1981).

    Article  PubMed  Google Scholar 

  155. Ma, Z. et al. Two-photon calcium imaging of neuronal and astrocytic responses: the influence of electrical stimulus parameters and calcium signaling mechanisms. J. Neural Eng. 18, 046096 (2021).

    Article  Google Scholar 

  156. Cha, M., Lee, K. H. & Lee, B. H. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci. Rep. 10, 943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gary, D. S., Malone, M., Capestany, P., Houdayer, T. & Mcdonald, J. W. Electrical stimulation promotes the survival of oligodendrocytes in mixed cortical cultures. J. Neurosci. Res. 90, 72–83 (2012).

    Article  PubMed  Google Scholar 

  158. Chen, K., Stieger, K. C. & Kozai, T. D. Challenges and opportunities of advanced gliomodulation technologies for excitation–inhibition balance of brain networks. Curr. Opin. Biotechnol. 72, 112–120 (2021).

  159. Bahr-Hosseini, M. & Bikson, M. Neurovascular-modulation: a review of primary vascular responses to transcranial electrical stimulation as a mechanism of action. Brain Stimul. 14, 837–847 (2021).

    Article  PubMed  Google Scholar 

  160. Gellner, A. K., Frase, S., Reis, J. & Fritsch, B. Direct current stimulation increases blood flow and permeability of cortical microvasculature in vivo. Eur. J. Neurol. 30, 362–371 (2023).

    Article  PubMed  Google Scholar 

  161. Cauli, B. & Hamel, E. Brain perfusion and astrocytes. Trends Neurosci. 41, 409–413 (2018).

    Article  PubMed  Google Scholar 

  162. Wellman, S. M. et al. Dynamic changes in the structure and function of brain mural cells around chronically implanted microelectrodes. Biomaterials 315, 122963 (2025).

    Article  PubMed  Google Scholar 

  163. Vazquez, A., Fukuda, M. & Kim, S. Inhibitory neuron activity contributions to hemodynamic responses and metabolic load examined using an inhibitory optogenetic mouse model. Cereb. Cortex 28, 4105–4119 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Krawchuk, M. B., Ruff, C. F., Yang, X., Ross, S. E. & Vazquez, A. L. Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex. J. Cereb. Blood Flow. Metab. 40, 1427–1440 (2020).

    Article  PubMed  Google Scholar 

  165. Anenberg, E., Chan, A. W., Xie, Y., LeDue, J. M. & Murphy, T. H. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J. Cereb. Blood Flow Metab. 35, 1579–1586 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

    Article  PubMed  Google Scholar 

  167. Chen, X. et al. Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys. J. Neural Eng. 20, 036039 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Woeppel, K. et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain-computer-interfaces. Front. Bioeng. Biotechnol. 9, 759711 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Barrese, J. C. et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10, 066014 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).

    Article  PubMed  Google Scholar 

  171. Lee, A. H., Lee, J., Leung, V., Larson, L. & Nurmikko, A. Patterned electrical brain stimulation by a wireless network of implantable microdevices. Nat. Commun. 15, 10093 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Burton, A. et al. Wireless, battery-free, and fully implantable electrical neurostimulation in freely moving rodents. Microsyst. Nanoeng. 7, 62 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kim, S. et al. Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdevices 11, 453–466 (2009).

    Article  PubMed  Google Scholar 

  174. Zhang, Z. & Dai, J. Fully implantable wireless brain–computer interface for humans: advancing toward the future. Innovation 5, 100595 (2024).

    Google Scholar 

  175. Simeral, J. D. et al. Home use of a percutaneous wireless intracortical brain–computer interface by individuals with tetraplegia. IEEE Trans. Biomed. Eng. 68, 2313–2325 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Weiss, J. M., Gaunt, R. A., Franklin, R., Boninger, M. L. & Collinger, J. L. Demonstration of a portable intracortical brain–computer interface. Brain Comput. Interfaces 6, 106–117 (2019).

    Article  Google Scholar 

  177. Wellman, S. M. et al. A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28, 1701269 (2018).

    Article  PubMed  Google Scholar 

  178. Opie, N. in Brain–Computer Interface Research (eds Guger, C. et al.) 127–132 (Springer, 2021).

  179. Zheng, X. S., Tan, C., Castagnola, E. & Cui, X. T. Electrode materials for chronic electrical microstimulation. Adv. Health. Mater. 10, 2100119 (2021).

    Article  Google Scholar 

  180. Kozai, T. D. Y. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cogan, S. F., Ludwig, K. A., Welle, C. G. & Takmakov, P. Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng. 13, 021001 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Johnson, M. D., Otto, K. J. & Kipke, D. R. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 160–165 (2005).

    Article  PubMed  Google Scholar 

  183. Otto, K. J., Johnson, M. D. & Kipke, D. R. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans. Biomed. Eng. 53, 333–340 (2006).

    Article  PubMed  Google Scholar 

  184. Eles, J. R., Vazquez, A. L., Kozai, T. D. Y. & Cui, X. T. In vivo imaging of neuronal calcium during electrode implantation: spatial and temporal mapping of damage and recovery. Biomaterials 174, 79–94 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Bjånes, D. A. et al. Quantifying physical degradation alongside recording and stimulation performance of 980 intracortical microelectrodes chronically implanted in three humans for 956–2130 days. Acta Biomater. 198, 188–206 (2025).

    Article  PubMed  Google Scholar 

  186. Szymanski, L. J. et al. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J. Neural Eng. 18, 0460b9 (2021).

    Article  Google Scholar 

  187. Urdaneta, M. E. et al. The long-term stability of intracortical microstimulation and the foreign body response are layer dependent. Front. Neurosci. 16, 908858 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Okorokova, E. V., He, Q. & Bensmaia, S. J. Biomimetic encoding model for restoring touch in bionic hands through a nerve interface. J. Neural Eng. 15, 066033 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Saal, H. P., Delhaye, B. P., Rayhaun, B. C. & Bensmaia, S. J. Simulating tactile signals from the whole hand with millisecond precision. Proc. Natl Acad. Sci. USA 114, E5693–E5702 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Valle, G. et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 100, 37–45 (2018).

    Article  PubMed  Google Scholar 

  191. van der Grinten, M. et al. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses. eLife 13, e85812 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kumaravelu, K. & Grill, W. M. Neural mechanisms of the temporal response of cortical neurons to intracortical microstimulation. Brain Stimul. 17, 365–381 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kunigk, N. G., Urdaneta, M. E., Malone, I. G., Delgado, F. & Otto, K. J. Reducing behavioral detection thresholds per electrode via synchronous, spatially-dependent intracortical microstimulation. Front. Neurosci. 16, 876142 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Meikle, S. J., Hagan, M. A., Price, N. S. C. & Wong, Y. T. Intracortical current steering shifts the location of evoked neural activity. J. Neural Eng. 19, 035003 (2022).

    Article  Google Scholar 

  195. Meikle, S. J., Hagan, M. A., Price, N. S. C. & Wong, Y. T. Cortical layering disrupts multi-electrode current steering. J. Neural Eng. 20, 036031 (2023).

    Article  Google Scholar 

  196. Hokanson, J. A., Gaunt, R. A. & Weber, D. J. Effects of synchronous electrode pulses on neural recruitment during multichannel microstimulation. Sci. Rep. 8, 13067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Shannon, R. V.A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39, 424–426 (1992).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this Review to the late Sliman Bensmaia, whose work on somatosensation and neuroprostheses in both non-human primates and humans helped lay the foundation for much of our current understanding of ICMS in sensory cortices and strongly motivated this work. We also thank F. Li and N. Suematsu for providing feedback on the manuscript. This Review was supported by NIH F32MH130022, T32NS086749, R01NS105691, R01NS115707, R01NS129632, NSF CAREER CBET 1943906, NIH U01 NS126052, R01 NS117405 and R37 NS040894.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Hughes or Takashi D. Y. Kozai.

Ethics declarations

Competing interests

X.C. is the co-founder and shareholder of Phosphoenix BV. Since the preparation of this Review, C.H. has become employed by Blackrock Neurotech, which has developed technology discussed herein. This employment did not influence the content or conclusions of the Review. T.D.Y.K. and W.G. declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughes, C., Chen, X., Grill, W. et al. Neural mechanisms underlying intracortical microstimulation for sensory restoration. Nat. Biomed. Eng (2026). https://doi.org/10.1038/s41551-025-01583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01583-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research