Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The domino hexadehydro-Diels–Alder reaction transforms polyynes to benzynes to naphthynes to anthracynes to tetracynes (and beyond?)

Abstract

Polyacenes are organic compounds that have multiple, fused, aromatic rings. These highly conjugated molecules often have interesting photonic and/or electronic properties that afford them the potential for application in a host of organoelectronic devices such as sensors, light-emitting diodes, photovoltaic devices and field-effect transistors. Here, we show the development and use of the domino hexadehydro-Diels–Alder reaction to synthesize structurally diverse polyacenes from acyclic polyyne precursors. The key event in these transformations is the successive reaction of multiple 1,3-butadiyne units with a series of in-situ-generated, diynophilic arynes. The polyyne substrates were designed to allow for rapid engagement of each progressively larger aryne following the initiating (and ratelimiting) production of the first reactive intermediate—the benzyne. We show that aryne-trapping reactions are broad in scope and that these cascade or domino processes can be quite efficient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The domino HDDA reaction.
Fig. 2: Benzyne to naphthyne to anthracyne.
Fig. 3: Polyyne to benzyne to naphthyne is a stepwise process.
Fig. 4: Examples of domino HDDA products via naphthyne intermediates.
Fig. 5: Unusual acid-catalysed transformations of products 16 and 25s.
Fig. 6: Benzyne to naphthyne to anthracyne to tetracyne.

Similar content being viewed by others

References

  1. Ye, Q. & Chi, C. Y. Recent highlights and perspectives on acene based molecules and materials. Chem. Mater. 26, 4046–4056 (2014).

    Article  CAS  Google Scholar 

  2. Perez, D., Pena, D. & Guitian, E. Aryne cycloaddition reactions in the synthesis of large polycyclic aromatic compounds. Eur. J. Org. Chem. 2013, 5981–6013 (2013).

    Article  CAS  Google Scholar 

  3. Parker, T. & Marder, S. Synthetic Methods in Organic Electronic and Photonic Materials: A Practical Guide (Royal Society of Chemistry, London, 2015).

    Google Scholar 

  4. Li, J. B. & Zhang, Q. C. Mono- and oligocyclic aromatic ynes and diynes as building blocks to approach larger acenes, heteroacenes, and twistacenes. Synlett 24, 686–696 (2013).

    Article  CAS  Google Scholar 

  5. Hoffmann, R. W. Dehydrobenzene and Cycloalkynes Vol. 11 (Academic Press, New York, NY, 1967).

  6. Yoshida, S. & Hosoya, T. The renaissance and bright future of synthetic aryne chemistry. Chem. Lett. 44, 1450–1460 (2015).

    Article  CAS  Google Scholar 

  7. Bradley, A. Z. & Johnson, R. P. Thermolysis of 1,3,8-nonatriyne: evidence for intramolecular [2+4] cycloaromatization to a benzyne intermediate. J. Am. Chem. Soc. 119, 9917–9918 (1997).

    Article  CAS  Google Scholar 

  8. Miyawaki, K., Suzuki, R., Kawano, T. & Ueda, I. Cycloaromatization of a non-conjugated polyenyne system: synthesis of 5H-benzo[d]fluoreno[3,2-b]pyrans via diradicals generated from 1-[2-{4-(2-alkoxymethylphenyl)butan-1,3-diynyl}]phenylpentan-2,4-diyn-1-ols and trapping evidence for the 1,2-didehydrobenzene diradical. Tetrahedron Lett. 38, 3943–3946 (1997).

    Article  CAS  Google Scholar 

  9. Xu, F., Xiao, X. & Hoye, T. R. Photochemical hexadehydro-Diels–Alder reaction. J. Am. Chem. Soc. 139, 8400–8403 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Hoye, T. R., Baire, B., Niu, D. W., Willoughby, P. H. & Woods, B. P. The hexadehydro-Diels–Alder reaction. Nature 490, 208–212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diamond, O. J. & Marder, T. B. Methodology and applications of the hexadehydro-Diels–Alder (HDDA) reaction. Org. Chem. Front. 4, 891–910 (2017).

    Article  CAS  Google Scholar 

  12. Marell, D. J. et al. Mechanism of the intramolecular hexadehydro-Diels–Alder reaction. J. Org. Chem. 80, 11744–11754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fields, E. K. & Meyerson, S. A new mechanism for acetylene pyrolysis to aromatic hydrocarbons. Tetrahedron Lett. 8, 571–575 (1967).

    Article  Google Scholar 

  14. Miyawaki, K., Kawano, T. & Ueda, I. Multiple cycloaromatization of novel aromatic enediynes bearing a triggering device on the terminal acetylene carbon. Tetrahedron Lett. 39, 6923–6926 (1998).

    Article  CAS  Google Scholar 

  15. Miyawaki, K., Kawano, T. & Ueda, I. Domino thermal radical cycloaromatization of non-conjugated aromatic hexa- and heptaynes: synthesis of fluoranthene and benzo[a]rubicene skeletons. Tetrahedron Lett. 41, 1447–1451 (2000).

    Article  CAS  Google Scholar 

  16. Miyawaki, K., Kawano, T. & Ueda, I. Synthesis and properties of functionalized [6]helicenes by the thermal domino radical cycloaromatization of acyclic polyynes. Polycycl. Aromat. Comp. 19, 133–154 (2000).

    Article  CAS  Google Scholar 

  17. Cahill, K. J., Ajaz, A. & Johnson, R. P. New thermal routes to o rtho-benzyne. Aust. J. Chem. 63, 1007–1012 (2010).

    Article  CAS  Google Scholar 

  18. Yoshida, S. et al. Construction of condensed polycyclic aromatic frameworks through intramolecular cycloaddition reactions involving arynes bearing an internal alkyne moiety. Chem. Eur. J. 23, 15332–15335 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Woods, B. P., Baire, B. & Hoye, T. R. Rates of hexadehydro-Diels–Alder (HDDA) cyclizations: impact of the linker structure. Org. Lett. 16, 4578–4581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, J. H., Baire, B. & Hoye, T. R. Cycloaddition reactions of azide, furan, and pyrrole units with benzynes generated by the hexadehydro-Diels–Alder (HDDA) reaction. Heterocycles 88, 1191–1200 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Wittig, G. & Pohmer, L. Intermediäre Bildung von Dehydrobenzol (Cyclohexadienin). Angew. Chem. 67, 348–348 (1955).

    Article  CAS  Google Scholar 

  22. Niu, D. W., Wang, T., Woods, B. P. & Hoye, T. R. Dichlorination of (hexadehydro-Diels–Alder generated) benzynes and a protocol for interrogating the kinetic order of bimolecular aryne trapping reactions. Org. Lett. 16, 254–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Niu, D. W., Willoughby, P. H., Woods, B. P., Baire, B. & Hoye, T. R. Alkane desaturation by concerted double hydrogen atom transfer to benzyne. Nature 501, 531–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakayama, J., Tajiri, T. & Hoshino, M. Insertion of benzyne and substituted benzynes into the S–S bond of diphenyl and di-p-tolyl disulfides yielding the corresponding o-bis(arylthio)benzenes. Bull. Chem. Soc. Jpn 59, 2907–2908 (1986).

    Article  CAS  Google Scholar 

  25. Hu, Y. M. et al. Fused multifunctionalized dibenzoselenophenes from tetraynes. Chem. Commun. 53, 1542–1545 (2017).

    Article  CAS  Google Scholar 

  26. Cheong, P. H.-Y. et al. Indolyne and aryne distortions and nucleophilic regioselectivities. J. Am. Chem. Soc. 132, 1267–1269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wooi, G. Y. & White, J. M. Structural manifestations of the cheletropic reaction. Org. Biomol. Chem. 3, 972–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Bronner, S. M., Mackey, J. L., Houk, K. N. & Garg, N. K. Steric effects compete with aryne distortion to control regioselectivities of nucleophilic additions to 3-silylarynes. J. Am. Chem. Soc. 134, 13966–13969 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stork, G. & Matsuda, K. Preparation of benzocoronene and intermediates. US patent 3,364,275 (1968).

  30. Xu, F., Xiao, X. & Hoye, T. R. Reactions of HDDA-derived benzynes with perylenes: rapid construction of polycyclic aromatic compounds. Org. Lett. 18, 5636–5639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie, L. H. et al. Unexpected one-pot method to synthesize spiro[fluorene-9,9′-xanthene] building blocks for blue-light-emitting materials. Org. Lett. 8, 2787–2790 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Xie, L. H., Liang, J., Song, J. A., Yin, C. R. & Huang, W. Spirocyclic aromatic hydrocarbons (SAHs) and their synthetic methodologies. Curr. Org. Chem. 14, 2169–2195 (2010).

    Article  CAS  Google Scholar 

  33. Ajaz, A., McLaughlin, E. C., Skraba, S. L., Thamatam, R. & Johnson, R. P. Phenyl shifts in substituted arenes via ipso arenium ions. J. Org. Chem. 77, 9487–9495 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Skraba-Joiner, S. L., McLaughlin, E. C., Ajaz, A., Thamatam, R. & Johnson, R. P. Scholl cyclizations of aryl naphthalenes: rearrangement precedes cyclization. J. Org. Chem. 80, 9578–9583 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Thorley, K. J. & Anthony, J. E. The electronic nature and reactivity of the larger acenes. Isr. J. Chem. 54, 642–649 (2014).

    Article  CAS  Google Scholar 

  36. Dou, L. T., Liu, Y. S., Hong, Z. R., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Pascal, R. A. Jr. Twisted acenes. Chem. Rev. 106, 4809–4819 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The studies reported here were supported by the US Department of Health and Human Services (National Institute of General Medical Sciences; R01 GM-65597, now R35 GM-127097) and the National Science Foundation (CHE-1665389). The computational work was carried out using hardware and software made available through the University of Minnesota Supercomputing Institute (MSI). Some NMR spectral data were obtained with an instrument purchased with a grant from the NIH Shared Instrumentation Grant program (S10OD011952). The authors thank V.G. Young, Jr (University of Minnesota) for performing the X-ray diffraction analysis and F. Xu (University of Minnesota) for assistance with the collection of absorption and fluorescence spectra.

Author information

Authors and Affiliations

Authors

Contributions

X.X. and T.R.H. conceived the experiments, interpreted the data, and co-wrote the manuscript. X.X. executed the experiments and collected the data.

Corresponding author

Correspondence to Thomas R. Hoye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Experimental details and full spectroscopic characterization data for all new compounds, a description of the computational methods and results, UV-vis absorption and emission spectra, a summary of the X-ray diffraction data, and copies of all proton and carbon NMR spectra

Crystallographic data

CIF for compound 25k; CCDC reference: 1818244

Crystallographic data

CIF for catalyst 28; CCDC reference: 1818243

Crystallographic data

CIF for catalyst 32-H; CCDC reference: 1818245

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Hoye, T.R. The domino hexadehydro-Diels–Alder reaction transforms polyynes to benzynes to naphthynes to anthracynes to tetracynes (and beyond?). Nature Chem 10, 838–844 (2018). https://doi.org/10.1038/s41557-018-0075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-018-0075-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing