Abstract
The polytheonamides are among the most complex and biosynthetically distinctive natural products known to date. These potent peptide cytotoxins are derived from a ribosomal precursor processed by 49 mostly non-canonical posttranslational modifications. As the producer is a ‘microbial dark matter’ bacterium only distantly related to any cultivated organism, >70-step chemical syntheses have been developed to access these unique compounds. Here, we mined prokaryotic diversity to establish a synthetic platform based on the new host Microvirgula aerodenitrificans that produces hypermodified peptides within two days. Using this system, we generated the aeronamides, new polytheonamide-type compounds with near-picomolar cytotoxicity. Aeronamides, as well as the polygeonamides produced from deep-rock biosphere DNA, contain the highest numbers of d-amino acids in known biomolecules. With increasing bacterial genomes being sequenced, similar host mining strategies might become feasible to access further elusive natural products from uncultivated life.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
Data analysed in the current study are available from the corresponding author upon reasonable request.
References
Charlop-Powers, Z., Milshteyn, A. & Brady, S. F. Metagenomic small molecule discovery methods. Curr. Opin. Microbiol. 19, 70–75 (2014).
Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).
Charlop-Powers, Z., Owen, J. G., Reddy, B. V., Ternei, M. A. & Brady, S. F. Chemical–biogeographic survey of secondary metabolism in soil. Proc. Natl Acad. Sci. USA 111, 3757–3762 (2014).
Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).
Iqbal, H. A., Low-Beinart, L., Obiajulu, J. U. & Brady, S. F. Natural product discovery through improved functional metagenomics in Streptomyces. J. Am. Chem. Soc. 138, 9341–9344 (2016).
Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).
Hamada, T. et al. Solution structure of polytheonamide B, a highly cytotoxic nonribosomal polypeptide from marine sponge. J. Am. Chem. Soc. 132, 12941–12945 (2010).
Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).
Freeman, M. F., Helf, M. J., Bhushan, A., Morinaka, B. I. & Piel, J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat. Chem. 9, 387–395 (2017).
Helf, M. J., . & Freeman, M. F. & Piel, J. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis. J. Ind. Microbiol. Biotechnol. 46, 551–563 (2019).
Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A. & Prinsep, M. R. Marine natural products. Nat. Prod. Rep. 36, 122–173 (2019).
Inoue, M. et al. Total synthesis of the large non-ribosomal peptide polytheonamide B. Nat. Chem. 2, 280–285 (2010).
Hayata, A., Itoh, H. & Inoue, M. Solid-phase total synthesis and dual mechanism of action of the channel-forming 48-mer peptide polytheonamide B. J. Am. Chem. Soc. 140, 10602–10611 (2018).
Bewley, C. A. & Faulkner, D. J. Lithistid sponges: star performers or hosts to the stars. Angew. Chem. Int. Ed. 37, 2162–2178 (1998).
Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).
Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).
Navarro, E., Tejero, R., Fenude, E. & Celda, B. Solution NMR structure of a d,l-alternating oligonorleucine as a model of beta-helix. Biopolymers 59, 110–119 (2001).
Morinaka, B. I. et al. Radical S‐adenosyl methionine epimerases: regioselective introduction of diverse d‐amino acid patterns into peptide natural products. Angew. Chem. Int. Ed. 53, 8503–8507 (2014).
Morinaka, B. I., Verest, M., Freeman, M. F., Gugger, M. & Piel, J. An orthogonal D2O-based induction system that provides insights into d-amino acid pattern formation by radical S-adenosylmethionine peptide epimerases. Angew. Chem. Int. Ed. 56, 762–766 (2017).
Renevey, A. & Riniker, S. The importance of N-methylations for the stability of the β6.3-helical conformation of polytheonamide B. Eur. Biophys. J. 46, 363–374 (2017).
Bagnoud, A. et al. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nat. Commun. 7, 12770 (2016).
Labonte, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015).
Patureau, D. et al. Microvirgula aerodenitrificans gen. nov., sp. nov., a new gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int. J. Syst. Bacteriol. 48, 775–782 (1998).
Tett, A. J., Rudder, S. J., Bourdes, A., Karunakaran, R. & Poole, P. S. Regulatable vectors for environmental gene expression in Alphaproteobacteria. Appl. Environ. Microbiol. 78, 7137–7140 (2012).
Shinohara, N., Itoh, H., Matsuoka, S. & Inoue, M. Selective modification of the N-terminal structure of polytheonamide B significantly changes its cytotoxicity and activity as an ion channel. ChemMedChem 7, 1770–1773 (2012).
Blair, W. S. & Semler, B. L. Self-cleaving proteases. Curr. Opin. Cell Biol. 3, 1039–1045 (1991).
Iwamoto, M., Shimizu, H., Muramatsu, I. & Oiki, S. A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial-insertion into the membrane. FEBS Lett. 584, 3995–3999 (2010).
Itoh, H., Matsuoka, S., Kreir, M. & Inoue, M. Design, synthesis and functional analysis of dansylated polytheonamide mimic: an artificial peptide ion channel. J. Am. Chem. Soc. 134, 14011–14018 (2012).
Morita, M. & Schmidt, E. W. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat. Prod. Rep. 35, 357–378 (2018).
Partida-Martinez, L. P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005).
Kampa, A. et al. Metagenomic natural product discovery in lichen provides evidence for specialized biosynthetic pathways in diverse symbioses. Proc. Natl Acad. Sci. USA 110, E3129–E3127 (2013).
Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).
Schmidt, E. W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl Acad. Sci. USA 102, 7315–7320 (2005).
Long, P. F., Dunlap, W. C., Battershill, C. N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. Chembiochem 6, 1760–1765 (2005).
Smith, T. E. et al. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat. Chem. Biol. 14, 179–185 (2018).
Schleissner, C. et al. Bacterial production of a pederin analogue by a free-living marine alphaproteobacterium. J. Nat. Prod. 80, 2170–2173 (2017).
Kust, A. et al. Discovery of a pederin family compound in a nonsymbiotic bloom-forming cyanobacterium. ACS Chem. Biol. 13, 1123–1129 (2018).
Hoffmann, T., Müller, S., Nadmid, S., Garcia, R. & Müller, R. Microsclerodermins from terrestrial myxobacteria: an intriguing biosynthesis likely connected to a sponge symbiont. J. Am. Chem. Soc. 135, 16904–16911 (2013).
Tao, Y. et al. Samholides, swinholide-related metabolites from a marine cyanobacterium cf. Phormidium sp. J. Org. Chem. 83, 3034–3046 (2018).
Weimer, B. C. 100K pathogen genome project. Gen. Announc. 5, e00594-17 (2017).
Kyrpides, N. C. et al. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol. 12, e1001920 (2014).
Gilbert, J. A., Jansson, J. K. & Knight, R. Earth microbiome project and global systems biology. mSystems 3, e00217 (2018).
Sunagawa, S., Karsenti, E., Bowler, C. & Bork, P. Computational eco-systems biology in Tara Oceans: translating data into knowledge. Mol. Syst. Biol. 11, 809 (2015).
Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
Borgonie, G. et al. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. Nat. Commun. 6, 8952 (2015).
Fuchs, S. W. et al. A lanthipeptide-like N-terminal leader region guides peptide epimerization by radical SAM epimerases: implications for RiPP evolution. Angew. Chem. Int. Ed. 55, 12330–12333 (2016).
Wang, S. C. Cobalamin-dependent radical S-adenosyl-l-methionine enzymes in natural product biosynthesis. Nat. Prod. Rep. 35, 707–720 (2018).
Bauerle, M. R., Schwalm, E. L. & Booker, S. J. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J. Biol. Chem. 290, 3995–4002 (2015).
Werner, W. J. et al. In vitro phosphinate methylation by PhpK from Kitasatospora phosalacinea. Biochemistry 50, 8986–8988 (2011).
Marous, D. R. et al. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis. Proc. Natl Acad. Sci. USA 112, 10354–10358 (2015).
Lanz, N. D. et al. Enhanced solubilization of class B radical S-adenosylmethionine methylases by improved cobalamin uptake in Escherichia coli. Biochemistry 57, 1475–1490 (2018).
McLaughlin, M. I. & van der Donk, W. A. Stereospecific radical-mediated B12-dependent methyl transfer by the fosfomycin biosynthesis enzyme Fom3. Biochemistry 57, 4967–4971 (2018).
Wang, Y., Schnell, B., Baumann, S., Müller, R. & Begley, T. P. Biosynthesis of branched alkoxy groups: iterative methyl group alkylation by a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 139, 1742–1745 (2017).
Acknowledgements
We thank R. Bernier-Latmani and R. Stepanauskas for discussions and DNA samples that contained the geo and vep cluster, and B. I. Morinaka and R. Ueoka for technical advice. This work was supported by the Swiss National Science Foundation (205320_185077), the Helmut Horten Foundation, the EU (ERC Advanced Grant ‘SynPlex’, BluePharmTrain) and Novartis (17B075) to J.P.
Author information
Authors and Affiliations
Contributions
A.B. and J.P. designed the research. P.J.E. performed the promoter activity assays, and E.E.P. performed liposome experiments. A.B. performed all the other experiments. A.B., M.F.F. and J.P. analysed the data and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Information contains: Supplementary Materials and Methods, Supplementary Figs. 1–18 and Supplementary Tables 1–3.
Rights and permissions
About this article
Cite this article
Bhushan, A., Egli, P.J., Peters, E.E. et al. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat. Chem. 11, 931–939 (2019). https://doi.org/10.1038/s41557-019-0323-9
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41557-019-0323-9
This article is cited by
-
De novo design of ribosomally synthesized and post-translationally modified peptides
Nature Chemistry (2025)
-
Peptide surfactants with post-translational C-methylations that promote bacterial development
Nature Chemical Biology (2025)
-
Chemical richness and diversity of uncultivated ‘Entotheonella’ symbionts in marine sponges
Nature Chemical Biology (2025)
-
Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase
Nature Communications (2024)
-
Discovery of anti-Mycobacterium tuberculosis desertomycins from Streptomyces flavofungini TRM90047 based on genome mining and HSQC-TOCSY
Scientific Reports (2024)


