Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome mining- and synthetic biology-enabled production of hypermodified peptides

Abstract

The polytheonamides are among the most complex and biosynthetically distinctive natural products known to date. These potent peptide cytotoxins are derived from a ribosomal precursor processed by 49 mostly non-canonical posttranslational modifications. As the producer is a ‘microbial dark matter’ bacterium only distantly related to any cultivated organism, >70-step chemical syntheses have been developed to access these unique compounds. Here, we mined prokaryotic diversity to establish a synthetic platform based on the new host Microvirgula aerodenitrificans that produces hypermodified peptides within two days. Using this system, we generated the aeronamides, new polytheonamide-type compounds with near-picomolar cytotoxicity. Aeronamides, as well as the polygeonamides produced from deep-rock biosphere DNA, contain the highest numbers of d-amino acids in known biomolecules. With increasing bacterial genomes being sequenced, similar host mining strategies might become feasible to access further elusive natural products from uncultivated life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and BGC of polytheonamides.
Fig. 2: Epimerization of AerA in E. coli.
Fig. 3: Identifying conditions for the expression of the aer BGC.
Fig. 4: Hypermodified aeronamide peptides from expressions in M. aerodenitrificans.
Fig. 5: Generating aeronamide A and characterizing its ion-transport activity.
Fig. 6: Peptides of non-native cores modified by the M. aerodenitrificans platform.

Similar content being viewed by others

Data availability

Data analysed in the current study are available from the corresponding author upon reasonable request.

References

  1. Charlop-Powers, Z., Milshteyn, A. & Brady, S. F. Metagenomic small molecule discovery methods. Curr. Opin. Microbiol. 19, 70–75 (2014).

    Article  CAS  Google Scholar 

  2. Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).

    Article  CAS  Google Scholar 

  3. Charlop-Powers, Z., Owen, J. G., Reddy, B. V., Ternei, M. A. & Brady, S. F. Chemical–biogeographic survey of secondary metabolism in soil. Proc. Natl Acad. Sci. USA 111, 3757–3762 (2014).

    Article  CAS  Google Scholar 

  4. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  Google Scholar 

  5. Iqbal, H. A., Low-Beinart, L., Obiajulu, J. U. & Brady, S. F. Natural product discovery through improved functional metagenomics in Streptomyces. J. Am. Chem. Soc. 138, 9341–9344 (2016).

    Article  CAS  Google Scholar 

  6. Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    Article  CAS  Google Scholar 

  7. Hamada, T. et al. Solution structure of polytheonamide B, a highly cytotoxic nonribosomal polypeptide from marine sponge. J. Am. Chem. Soc. 132, 12941–12945 (2010).

    Article  CAS  Google Scholar 

  8. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  Google Scholar 

  9. Freeman, M. F., Helf, M. J., Bhushan, A., Morinaka, B. I. & Piel, J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat. Chem. 9, 387–395 (2017).

    Article  CAS  Google Scholar 

  10. Helf, M. J., . & Freeman, M. F. & Piel, J. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis. J. Ind. Microbiol. Biotechnol. 46, 551–563 (2019).

    Article  CAS  Google Scholar 

  11. Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A. & Prinsep, M. R. Marine natural products. Nat. Prod. Rep. 36, 122–173 (2019).

    Article  CAS  Google Scholar 

  12. Inoue, M. et al. Total synthesis of the large non-ribosomal peptide polytheonamide B. Nat. Chem. 2, 280–285 (2010).

    Article  CAS  Google Scholar 

  13. Hayata, A., Itoh, H. & Inoue, M. Solid-phase total synthesis and dual mechanism of action of the channel-forming 48-mer peptide polytheonamide B. J. Am. Chem. Soc. 140, 10602–10611 (2018).

    Article  CAS  Google Scholar 

  14. Bewley, C. A. & Faulkner, D. J. Lithistid sponges: star performers or hosts to the stars. Angew. Chem. Int. Ed. 37, 2162–2178 (1998).

    Article  Google Scholar 

  15. Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).

    Article  CAS  Google Scholar 

  16. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    Article  CAS  Google Scholar 

  17. Navarro, E., Tejero, R., Fenude, E. & Celda, B. Solution NMR structure of a d,l-alternating oligonorleucine as a model of beta-helix. Biopolymers 59, 110–119 (2001).

    Article  CAS  Google Scholar 

  18. Morinaka, B. I. et al. Radical S‐adenosyl methionine epimerases: regioselective introduction of diverse d‐amino acid patterns into peptide natural products. Angew. Chem. Int. Ed. 53, 8503–8507 (2014).

    Article  CAS  Google Scholar 

  19. Morinaka, B. I., Verest, M., Freeman, M. F., Gugger, M. & Piel, J. An orthogonal D2O-based induction system that provides insights into d-amino acid pattern formation by radical S-adenosylmethionine peptide epimerases. Angew. Chem. Int. Ed. 56, 762–766 (2017).

    Article  CAS  Google Scholar 

  20. Renevey, A. & Riniker, S. The importance of N-methylations for the stability of the β6.3-helical conformation of polytheonamide B. Eur. Biophys. J. 46, 363–374 (2017).

    Article  CAS  Google Scholar 

  21. Bagnoud, A. et al. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nat. Commun. 7, 12770 (2016).

    Article  CAS  Google Scholar 

  22. Labonte, J. M. et al. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015).

    Article  CAS  Google Scholar 

  23. Patureau, D. et al. Microvirgula aerodenitrificans gen. nov., sp. nov., a new gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int. J. Syst. Bacteriol. 48, 775–782 (1998).

    Article  CAS  Google Scholar 

  24. Tett, A. J., Rudder, S. J., Bourdes, A., Karunakaran, R. & Poole, P. S. Regulatable vectors for environmental gene expression in Alphaproteobacteria. Appl. Environ. Microbiol. 78, 7137–7140 (2012).

    Article  CAS  Google Scholar 

  25. Shinohara, N., Itoh, H., Matsuoka, S. & Inoue, M. Selective modification of the N-terminal structure of polytheonamide B significantly changes its cytotoxicity and activity as an ion channel. ChemMedChem 7, 1770–1773 (2012).

    Article  CAS  Google Scholar 

  26. Blair, W. S. & Semler, B. L. Self-cleaving proteases. Curr. Opin. Cell Biol. 3, 1039–1045 (1991).

    Article  CAS  Google Scholar 

  27. Iwamoto, M., Shimizu, H., Muramatsu, I. & Oiki, S. A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial-insertion into the membrane. FEBS Lett. 584, 3995–3999 (2010).

    Article  CAS  Google Scholar 

  28. Itoh, H., Matsuoka, S., Kreir, M. & Inoue, M. Design, synthesis and functional analysis of dansylated polytheonamide mimic: an artificial peptide ion channel. J. Am. Chem. Soc. 134, 14011–14018 (2012).

    Article  CAS  Google Scholar 

  29. Morita, M. & Schmidt, E. W. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat. Prod. Rep. 35, 357–378 (2018).

    Article  CAS  Google Scholar 

  30. Partida-Martinez, L. P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005).

    Article  CAS  Google Scholar 

  31. Kampa, A. et al. Metagenomic natural product discovery in lichen provides evidence for specialized biosynthetic pathways in diverse symbioses. Proc. Natl Acad. Sci. USA 110, E3129–E3127 (2013).

    Article  CAS  Google Scholar 

  32. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  Google Scholar 

  33. Schmidt, E. W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl Acad. Sci. USA 102, 7315–7320 (2005).

    Article  CAS  Google Scholar 

  34. Long, P. F., Dunlap, W. C., Battershill, C. N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. Chembiochem 6, 1760–1765 (2005).

    Article  CAS  Google Scholar 

  35. Smith, T. E. et al. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat. Chem. Biol. 14, 179–185 (2018).

    Article  CAS  Google Scholar 

  36. Schleissner, C. et al. Bacterial production of a pederin analogue by a free-living marine alphaproteobacterium. J. Nat. Prod. 80, 2170–2173 (2017).

    Article  CAS  Google Scholar 

  37. Kust, A. et al. Discovery of a pederin family compound in a nonsymbiotic bloom-forming cyanobacterium. ACS Chem. Biol. 13, 1123–1129 (2018).

    Article  CAS  Google Scholar 

  38. Hoffmann, T., Müller, S., Nadmid, S., Garcia, R. & Müller, R. Microsclerodermins from terrestrial myxobacteria: an intriguing biosynthesis likely connected to a sponge symbiont. J. Am. Chem. Soc. 135, 16904–16911 (2013).

    Article  CAS  Google Scholar 

  39. Tao, Y. et al. Samholides, swinholide-related metabolites from a marine cyanobacterium cf. Phormidium sp. J. Org. Chem. 83, 3034–3046 (2018).

    Article  CAS  Google Scholar 

  40. Weimer, B. C. 100K pathogen genome project. Gen. Announc. 5, e00594-17 (2017).

    Article  Google Scholar 

  41. Kyrpides, N. C. et al. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol. 12, e1001920 (2014).

    Article  Google Scholar 

  42. Gilbert, J. A., Jansson, J. K. & Knight, R. Earth microbiome project and global systems biology. mSystems 3, e00217 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Sunagawa, S., Karsenti, E., Bowler, C. & Bork, P. Computational eco-systems biology in Tara Oceans: translating data into knowledge. Mol. Syst. Biol. 11, 809 (2015).

    Article  Google Scholar 

  44. Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).

    Article  CAS  Google Scholar 

  45. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  Google Scholar 

  46. Borgonie, G. et al. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. Nat. Commun. 6, 8952 (2015).

    Article  CAS  Google Scholar 

  47. Fuchs, S. W. et al. A lanthipeptide-like N-terminal leader region guides peptide epimerization by radical SAM epimerases: implications for RiPP evolution. Angew. Chem. Int. Ed. 55, 12330–12333 (2016).

    Article  CAS  Google Scholar 

  48. Wang, S. C. Cobalamin-dependent radical S-adenosyl-l-methionine enzymes in natural product biosynthesis. Nat. Prod. Rep. 35, 707–720 (2018).

    Article  Google Scholar 

  49. Bauerle, M. R., Schwalm, E. L. & Booker, S. J. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J. Biol. Chem. 290, 3995–4002 (2015).

    Article  CAS  Google Scholar 

  50. Werner, W. J. et al. In vitro phosphinate methylation by PhpK from Kitasatospora phosalacinea. Biochemistry 50, 8986–8988 (2011).

    Article  CAS  Google Scholar 

  51. Marous, D. R. et al. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis. Proc. Natl Acad. Sci. USA 112, 10354–10358 (2015).

    Article  CAS  Google Scholar 

  52. Lanz, N. D. et al. Enhanced solubilization of class B radical S-adenosylmethionine methylases by improved cobalamin uptake in Escherichia coli. Biochemistry 57, 1475–1490 (2018).

    Article  CAS  Google Scholar 

  53. McLaughlin, M. I. & van der Donk, W. A. Stereospecific radical-mediated B12-dependent methyl transfer by the fosfomycin biosynthesis enzyme Fom3. Biochemistry 57, 4967–4971 (2018).

    Article  CAS  Google Scholar 

  54. Wang, Y., Schnell, B., Baumann, S., Müller, R. & Begley, T. P. Biosynthesis of branched alkoxy groups: iterative methyl group alkylation by a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 139, 1742–1745 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Bernier-Latmani and R. Stepanauskas for discussions and DNA samples that contained the geo and vep cluster, and B. I. Morinaka and R. Ueoka for technical advice. This work was supported by the Swiss National Science Foundation (205320_185077), the Helmut Horten Foundation, the EU (ERC Advanced Grant ‘SynPlex’, BluePharmTrain) and Novartis (17B075) to J.P.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and J.P. designed the research. P.J.E. performed the promoter activity assays, and E.E.P. performed liposome experiments. A.B. performed all the other experiments. A.B., M.F.F. and J.P. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Jörn Piel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information contains: Supplementary Materials and Methods, Supplementary Figs. 1–18 and Supplementary Tables 1–3.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, A., Egli, P.J., Peters, E.E. et al. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat. Chem. 11, 931–939 (2019). https://doi.org/10.1038/s41557-019-0323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-019-0323-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research