Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic acyloin-type heterocoupling of thioesters via a putative cobalt siloxycarbene

Abstract

α-Oxy-metallocarbenes exemplify Fischer carbenes and find use in the synthesis of diverse materials. Most, however, arise from the addition of reactive organometallics to toxic metal carbonyls. Here we report a method to access α-siloxycarbenes from thioesters via the reductive silylation of cobalt acyls. The reaction results in carbonyl dimerization with high hetero- and stereo-selectivity to yield unsymmetrical tetrasubstituted disiloxyalkenes, while avoiding competitive decarbonylation. These products can be further elaborated to new functionalized fragments, heterocycles and challenging enolsilanes. Several different reactivity patterns combined with mechanistic interrogation converge on α-oxycarbenes as fleeting catalytic intermediates, indicating a way to generate and exploit these reactive species under mild conditions. This method provides a general platform to harness carbene reactivity from carboxylates via metal acyls and enables a range of diverse reactivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background.
Fig. 2: Optimization and trends for thioester homo- and hetero-dimerization.
Fig. 3: Mechanistic studies and hypothesis.
Fig. 4: Substrate scope.
Fig. 5: Product derivatization and other applications of a cobalt complex in XEC.

Similar content being viewed by others

Data availability

Crystallographic data for compound 2d are available from the Cambridge Crystallographic Data Center under reference number CCDC 2448630. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. All other data to support the conclusions are available in the main text or Supplementary Information, including experimental procedures, copies of NMR spectra and X-ray structure reports.

References

  1. Wu, X.-F., Neumann, H. & Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 40, 4986–5009 (2011).

    Article  PubMed  Google Scholar 

  2. Meng, G., Shi, S. & Szostak, M. Cross-coupling of amides by N–C bond activation. Synlett 27, 2530–2540 (2016).

    Article  Google Scholar 

  3. Dander, J. E. & Garg, N. K. Breaking amides using nickel catalysis. ACS Catal. 7, 1413–1423 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pandey, A. K. Emerging nickel catalysis in ketones synthesis using carboxylic acid derivatives. ChemCatChem 14, e202101982 (2022).

    Article  Google Scholar 

  5. Ehehalt, L. E. et al. Cross-electrophile coupling: principles, methods, and applications in synthesis. Chem. Rev. 124, 13397–13569 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang, L., He, W. & Yu, Z. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 42, 599–621 (2013).

    Article  PubMed  Google Scholar 

  7. Hirschbeck, V., Gehrtz, P. H. & Fleischer, I. Metal-catalyzed synthesis and use of thioesters: recent developments. Chem. Eur. J. 24, 7092–7107 (2018).

    Article  PubMed  Google Scholar 

  8. Lutter, F. H., Grokenberger, L., Hofmayer, M. S. & Knochel, P. Cobalt-catalyzed acylation reactions of (hetero)arylzinc pivalates with thiopyridyl ester derivatives. Chem. Sci. 10, 8241–8245 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tokuyama, H., Yokoshima, S., Yamashita, T. & Fukuyama, T. A novel ketone synthesis by a palladium-catalyzed reaction of thiol esters and organozinc reagents. Tetrahedron Lett. 39, 3189–3192 (1998).

    Article  Google Scholar 

  10. Liebeskind, L. S. & Srogl, J. Thiol ester−boronic acid coupling. A mechanistically unprecedented and general ketone synthesis. J. Am. Chem. Soc. 122, 11260–11261 (2000).

    Article  Google Scholar 

  11. Onaka, M., Matsuoka, Y. & Mukaiyama, T. A convenient method for the direct preparation of ketones from 2-(6-(2-methoxyethyl)pyridyl)carboxylates and alkyl iodides by use of zinc dust and a catalytic amount of nickel dichloride. Chem. Lett. 10, 531–534 (1981).

    Article  Google Scholar 

  12. Wotal, A. C. & Weix, D. J. Synthesis of functionalized dialkyl ketones from carboxylic acid derivatives and alkyl halides. Org. Lett. 14, 1476–1479 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, J., Cary, B. P., Beyer, P. D., Gellman, S. H. & Weix, D. J. Ketones from nickel-catalyzed decarboxylative, non-symmetric cross-electrophile coupling of carboxylic acid esters. Angew. Chem. Int. Ed. 58, 12081–12085 (2019).

    Article  Google Scholar 

  14. Ai, Y., Ye, N., Wang, Q., Yahata, K. & Kishi, Y. Zirconium/nickel-mediated one-pot ketone synthesis. Angew. Chem. Int. Ed. 56, 10791–10795 (2017).

    Article  Google Scholar 

  15. Umehara, A. & Kishi, Y. Further studies on Ni/Zr-mediated one-pot ketone synthesis: use of a mixture of NiI- and NiII-catalysts greatly improves the molar ratio of coupling partners. Chem. Lett. 48, 947–950 (2019).

    Article  Google Scholar 

  16. Dermenci, A. & Dong, G. Decarbonylative C–C bond forming reactions mediated by transition metals. Sci. China Chem. 56, 685–701 (2013).

    Article  Google Scholar 

  17. Lu, H., Yu, T.-Y., Xu, P.-F. & Wei, H. Selective decarbonylation via transition-metal-catalyzed carbon–carbon bond cleavage. Chem. Rev. 121, 365–411 (2021).

    Article  PubMed  Google Scholar 

  18. Cao, H. et al. General and practical intramolecular decarbonylative coupling of thioesters via palladium catalysis. Org. Chem. Front. 8, 1587–1592 (2021).

    Article  Google Scholar 

  19. Cao, H. et al. Rh(I)-catalyzed intramolecular decarbonylation of thioesters. J. Org. Chem. 86, 10829–10837 (2021).

    Article  PubMed  Google Scholar 

  20. Guo, L. & Rueping, M. Decarbonylative cross-couplings: nickel catalyzed functional group interconversion strategies for the construction of complex organic molecules. Acc. Chem. Res. 51, 1185–1195 (2018).

    Article  PubMed  Google Scholar 

  21. Brigham, C. E., Malapit, C. A., Lalloo, N. & Sanford, M. S. Nickel-catalyzed decarbonylative synthesis of fluoroalkyl thioethers. ACS Catal. 10, 8315–8320 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang, Z., Akana, M. E., Sanders, K. M. & Weix, D. J. A decarbonylative approach to alkylnickel intermediates and C(sp3)–C(sp3) bond formation. Science 385, 1331–1337 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gooßen, L. J., Rodríguez, N. & Gooßen, K. Carboxylic acids as substrates in homogeneous catalysis. Angew. Chem. Int. Ed. 47, 3100–3120 (2008).

    Article  Google Scholar 

  24. Dötz, K. H. & Stendel, J. Jr. Fischer carbene complexes in organic synthesis: metal-assisted and metal-templated reactions. Chem. Rev. 109, 3227–3274 (2009).

    Article  PubMed  Google Scholar 

  25. Fischer, E. O. & Maasböl, A. On the existence of a tungsten carbonyl carbene complex. Angew. Chem. Int. Ed. Engl. 3, 580–581 (1964).

    Article  Google Scholar 

  26. Semmelhack, M. F. & Lee, G. R. Preparation of acylpentacarbonylchromate salts and alkoxycarbene pentacarbonyl complexes of chromium employing the pentacarbonylchromate dianion ([Cr(CO)5]2−. Organometallics 6, 1839–1844 (1987).

    Article  Google Scholar 

  27. Imwinkelried, R. & Hegedus, L. S. Synthesis of (aminocarbene)chromium(0) complexes by the reaction of Na2Cr(CO)5 with amides in the presence of trimethylsilyl chloride. Organometallics 7, 702–706 (1988).

    Article  Google Scholar 

  28. Simunic, J. L. & Pinhas, A. R. Reactivity of a lithium nickel acylate complex in THF. Inorg. Chem. 28, 2400–2406 (1989).

    Article  Google Scholar 

  29. Sakurai, S., Inagaki, T., Kodama, T., Yamanaka, M. & Tobisu, M. Palladium-catalyzed siloxycyclopropanation of alkenes using acylsilanes. J. Am. Chem. Soc. 144, 1099–1105 (2022).

    Article  PubMed  Google Scholar 

  30. Masuda, R., Anami, Y. & Kusama, H. Umpolung synthesis of selenoesters and telluroesters via the photoinduced coupling of acylsilanes with electrophilic chalcogen reagents. Org. Lett. 26, 8011–8016 (2024).

    Article  PubMed  Google Scholar 

  31. Schräpler, U. & Rühlmann, K. Über die Umsetzung von Säurederivaten und Halogensilanen mit Alkalimetallen, II. Die Synthese von Acyloinen aus Monocarbonsäureestern durch Darstellung und Hydrolyse der Bis-trimethylsiloxy-alkene. Chem. Ber. 96, 2780–2785 (1963).

    Article  Google Scholar 

  32. Bloomfield, J. J., Owsley, D. C. & Nelke, J. M. The acyloin condensation. In Organic Reactions (ed. Dauben, W. G.) (John Wiley & Sons, 1976); https://doi.org/10.1002/0471264180.or023.02

  33. Zhang, L., DeMuynck, B. M., Paneque, A. N., Rutherford, J. E. & Nagib, D. A. Carbene reactivity from alkyl and aryl aldehydes. Science 377, 649–654 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chiusoli, G. P., Costa, M., Pecchini, G. & Cometti, G. Synthesis of ketones from aroyl chlorides and nickel(0) complexes. Transit. Met. Chem. 2, 270–272 (1977).

    Article  Google Scholar 

  35. Su, Z.-M., Deng, R. & Stahl, S. S. Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling. Nat. Chem. 16, 2036–2043 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rasmussen, J. K., Krepski, L. R., Heilmann, S. M., Ii, H. K. S. & Tumey, M. L. A convenient synthesis of 1,2-bis[trimethylsiloxy]alkenes from α-diketones. Synthesis 1983, 457–459 (2002).

    Article  Google Scholar 

  37. Tanaka, Y. & Yamashita, M. Acid anhydrides as alternatives to acid chlorides in the palladium-catalyzed reaction with silacyclobutanes. Appl. Organomet. Chem. 16, 51–54 (2002).

    Article  Google Scholar 

  38. Shen, Z. & Dong, V. M. Benzofurans prepared by C–H bond functionalization with acylsilanes. Angew. Chem. Int. Ed. 48, 784–786 (2009).

    Article  Google Scholar 

  39. Becker, P., Priebbenow, D. L., Pirwerdjan, R. & Bolm, C. Acylsilanes in rhodium(III)-catalyzed directed aromatic C–H alkenylations and siloxycarbene reactions with C–C double bonds. Angew. Chem. Int. Ed. 53, 269–271 (2014).

    Article  Google Scholar 

  40. Priebbenow, D. L. Insights into the stability of siloxy carbene intermediates and their corresponding oxocarbenium ions. J. Org. Chem. 84, 11813–11822 (2019).

    Article  PubMed  Google Scholar 

  41. Doyle, M. P. Electrophilic metal carbenes as reaction intermediates in catalytic reactions. Acc. Chem. Res. 19, 348–356 (1986).

    Article  Google Scholar 

  42. Zhou, M., Lankelma, M., van der Vlugt, J. I. & de Bruin, B. Catalytic synthesis of 8-membered ring compounds via cobalt(III)-carbene radicals. Angew. Chem. Int. Ed. 59, 11073–11079 (2020).

    Article  Google Scholar 

  43. Epping, R. F. J., Vesseur, D., Zhou, M. & de Bruin, B. Carbene radicals in transition-metal-catalyzed reactions. ACS Catal. 13, 5428–5448 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu, M. & Uyeda, C. Redox approaches to carbene generation in catalytic cyclopropanation reactions. Angew. Chem. Int. Ed. 63, e202406218 (2024).

    Article  Google Scholar 

  45. Burés, J. Variable time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angew. Chem. Int. Ed. 55, 16084–16087 (2016).

    Article  Google Scholar 

  46. Gandeepan, P. & Cheng, C.-H. Cobalt catalysis involving π components in organic synthesis. Acc. Chem. Res. 48, 1194–1206 (2015).

    Article  PubMed  Google Scholar 

  47. Amatore, M. & Gosmini, C. Efficient cobalt-catalyzed formation of unsymmetrical biaryl compounds and its application in the synthesis of a sartan intermediate. Angew. Chem. Int. Ed. 47, 2089–2092 (2008).

    Article  Google Scholar 

  48. Dorval, C., Tricoire, M., Begouin, J.-M., Gandon, V. & Gosmini, C. Cobalt-catalyzed C(sp2)–CN bond activation: cross-electrophile coupling for biaryl formation and mechanistic insight. ACS Catal. 10, 12819–12827 (2020).

    Article  Google Scholar 

  49. Lee, W.-C. C., Wang, D.-S., Zhu, Y. & Zhang, X. P. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nat. Chem. 15, 1569–1580 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee, W.-C. C. & Zhang, X. P. Metalloradical catalysis: general approach for controlling reactivity and selectivity of homolytic radical reactions. Angew. Chem. Int. Ed. 63, e202320243 (2024).

    Article  Google Scholar 

  51. Nguyen, K. N. M. et al. Harnessing carbene polarity: Unified catalytic access to donor, neutral, and acceptor carbenes. Science 389, 183–189 (2025).

    Article  PubMed  Google Scholar 

  52. Chen, Y., Ruppel, J. V. & Zhang, X. P. Cobalt-catalyzed asymmetric cyclopropanation of electron-deficient olefins. J. Am. Chem. Soc. 129, 12074–12075 (2007).

    Article  PubMed  Google Scholar 

  53. Furukawa, J., Kawabata, N. & Nishimura, J. Synthesis of cyclopropanes by the reaction of olefins with dialkylzinc and methylene iodide. Tetrahedron 24, 53–58 (1968).

    Article  Google Scholar 

  54. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Foundation (NSF CAT CHE 2400341) is gratefully acknowledged. We thank Q. N. Wong, J. Lee and B. Orzolek for analysis and glovebox provision, L. Pasternack and G. J. Kroon for assistance with NMR spectroscopy and M. Gembicky, S. Yang, J. Bailey and the entire UCSD Crystallography Facility for X-ray crystallographic analysis. We thank M. A. Smith and J. J. Rojas for manuscript review and D. G. Blackmond for helpful mechanistic discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.K., K.Z. and R.S. conceived the concept. L.K., K.Z. and J.G. designed, conducted and analysed the experiments. L.K., K.Z. and R.S. wrote the paper, L.K. and K.Z. compiled the Supplementary Information and R.S. provided editorial feedback and oversight.

Corresponding author

Correspondence to Ryan Shenvi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, procedures, discussion, references, X-ray crystallography data and NMR spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Zong, K., Guo, J. et al. Catalytic acyloin-type heterocoupling of thioesters via a putative cobalt siloxycarbene. Nat. Chem. (2026). https://doi.org/10.1038/s41557-025-02036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41557-025-02036-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing