Abstract
α-Oxy-metallocarbenes exemplify Fischer carbenes and find use in the synthesis of diverse materials. Most, however, arise from the addition of reactive organometallics to toxic metal carbonyls. Here we report a method to access α-siloxycarbenes from thioesters via the reductive silylation of cobalt acyls. The reaction results in carbonyl dimerization with high hetero- and stereo-selectivity to yield unsymmetrical tetrasubstituted disiloxyalkenes, while avoiding competitive decarbonylation. These products can be further elaborated to new functionalized fragments, heterocycles and challenging enolsilanes. Several different reactivity patterns combined with mechanistic interrogation converge on α-oxycarbenes as fleeting catalytic intermediates, indicating a way to generate and exploit these reactive species under mild conditions. This method provides a general platform to harness carbene reactivity from carboxylates via metal acyls and enables a range of diverse reactivities.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
Crystallographic data for compound 2d are available from the Cambridge Crystallographic Data Center under reference number CCDC 2448630. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. All other data to support the conclusions are available in the main text or Supplementary Information, including experimental procedures, copies of NMR spectra and X-ray structure reports.
References
Wu, X.-F., Neumann, H. & Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 40, 4986–5009 (2011).
Meng, G., Shi, S. & Szostak, M. Cross-coupling of amides by N–C bond activation. Synlett 27, 2530–2540 (2016).
Dander, J. E. & Garg, N. K. Breaking amides using nickel catalysis. ACS Catal. 7, 1413–1423 (2017).
Pandey, A. K. Emerging nickel catalysis in ketones synthesis using carboxylic acid derivatives. ChemCatChem 14, e202101982 (2022).
Ehehalt, L. E. et al. Cross-electrophile coupling: principles, methods, and applications in synthesis. Chem. Rev. 124, 13397–13569 (2024).
Wang, L., He, W. & Yu, Z. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 42, 599–621 (2013).
Hirschbeck, V., Gehrtz, P. H. & Fleischer, I. Metal-catalyzed synthesis and use of thioesters: recent developments. Chem. Eur. J. 24, 7092–7107 (2018).
Lutter, F. H., Grokenberger, L., Hofmayer, M. S. & Knochel, P. Cobalt-catalyzed acylation reactions of (hetero)arylzinc pivalates with thiopyridyl ester derivatives. Chem. Sci. 10, 8241–8245 (2019).
Tokuyama, H., Yokoshima, S., Yamashita, T. & Fukuyama, T. A novel ketone synthesis by a palladium-catalyzed reaction of thiol esters and organozinc reagents. Tetrahedron Lett. 39, 3189–3192 (1998).
Liebeskind, L. S. & Srogl, J. Thiol ester−boronic acid coupling. A mechanistically unprecedented and general ketone synthesis. J. Am. Chem. Soc. 122, 11260–11261 (2000).
Onaka, M., Matsuoka, Y. & Mukaiyama, T. A convenient method for the direct preparation of ketones from 2-(6-(2-methoxyethyl)pyridyl)carboxylates and alkyl iodides by use of zinc dust and a catalytic amount of nickel dichloride. Chem. Lett. 10, 531–534 (1981).
Wotal, A. C. & Weix, D. J. Synthesis of functionalized dialkyl ketones from carboxylic acid derivatives and alkyl halides. Org. Lett. 14, 1476–1479 (2012).
Wang, J., Cary, B. P., Beyer, P. D., Gellman, S. H. & Weix, D. J. Ketones from nickel-catalyzed decarboxylative, non-symmetric cross-electrophile coupling of carboxylic acid esters. Angew. Chem. Int. Ed. 58, 12081–12085 (2019).
Ai, Y., Ye, N., Wang, Q., Yahata, K. & Kishi, Y. Zirconium/nickel-mediated one-pot ketone synthesis. Angew. Chem. Int. Ed. 56, 10791–10795 (2017).
Umehara, A. & Kishi, Y. Further studies on Ni/Zr-mediated one-pot ketone synthesis: use of a mixture of NiI- and NiII-catalysts greatly improves the molar ratio of coupling partners. Chem. Lett. 48, 947–950 (2019).
Dermenci, A. & Dong, G. Decarbonylative C–C bond forming reactions mediated by transition metals. Sci. China Chem. 56, 685–701 (2013).
Lu, H., Yu, T.-Y., Xu, P.-F. & Wei, H. Selective decarbonylation via transition-metal-catalyzed carbon–carbon bond cleavage. Chem. Rev. 121, 365–411 (2021).
Cao, H. et al. General and practical intramolecular decarbonylative coupling of thioesters via palladium catalysis. Org. Chem. Front. 8, 1587–1592 (2021).
Cao, H. et al. Rh(I)-catalyzed intramolecular decarbonylation of thioesters. J. Org. Chem. 86, 10829–10837 (2021).
Guo, L. & Rueping, M. Decarbonylative cross-couplings: nickel catalyzed functional group interconversion strategies for the construction of complex organic molecules. Acc. Chem. Res. 51, 1185–1195 (2018).
Brigham, C. E., Malapit, C. A., Lalloo, N. & Sanford, M. S. Nickel-catalyzed decarbonylative synthesis of fluoroalkyl thioethers. ACS Catal. 10, 8315–8320 (2020).
Huang, Z., Akana, M. E., Sanders, K. M. & Weix, D. J. A decarbonylative approach to alkylnickel intermediates and C(sp3)–C(sp3) bond formation. Science 385, 1331–1337 (2024).
Gooßen, L. J., Rodríguez, N. & Gooßen, K. Carboxylic acids as substrates in homogeneous catalysis. Angew. Chem. Int. Ed. 47, 3100–3120 (2008).
Dötz, K. H. & Stendel, J. Jr. Fischer carbene complexes in organic synthesis: metal-assisted and metal-templated reactions. Chem. Rev. 109, 3227–3274 (2009).
Fischer, E. O. & Maasböl, A. On the existence of a tungsten carbonyl carbene complex. Angew. Chem. Int. Ed. Engl. 3, 580–581 (1964).
Semmelhack, M. F. & Lee, G. R. Preparation of acylpentacarbonylchromate salts and alkoxycarbene pentacarbonyl complexes of chromium employing the pentacarbonylchromate dianion ([Cr(CO)5]2−. Organometallics 6, 1839–1844 (1987).
Imwinkelried, R. & Hegedus, L. S. Synthesis of (aminocarbene)chromium(0) complexes by the reaction of Na2Cr(CO)5 with amides in the presence of trimethylsilyl chloride. Organometallics 7, 702–706 (1988).
Simunic, J. L. & Pinhas, A. R. Reactivity of a lithium nickel acylate complex in THF. Inorg. Chem. 28, 2400–2406 (1989).
Sakurai, S., Inagaki, T., Kodama, T., Yamanaka, M. & Tobisu, M. Palladium-catalyzed siloxycyclopropanation of alkenes using acylsilanes. J. Am. Chem. Soc. 144, 1099–1105 (2022).
Masuda, R., Anami, Y. & Kusama, H. Umpolung synthesis of selenoesters and telluroesters via the photoinduced coupling of acylsilanes with electrophilic chalcogen reagents. Org. Lett. 26, 8011–8016 (2024).
Schräpler, U. & Rühlmann, K. Über die Umsetzung von Säurederivaten und Halogensilanen mit Alkalimetallen, II. Die Synthese von Acyloinen aus Monocarbonsäureestern durch Darstellung und Hydrolyse der Bis-trimethylsiloxy-alkene. Chem. Ber. 96, 2780–2785 (1963).
Bloomfield, J. J., Owsley, D. C. & Nelke, J. M. The acyloin condensation. In Organic Reactions (ed. Dauben, W. G.) (John Wiley & Sons, 1976); https://doi.org/10.1002/0471264180.or023.02
Zhang, L., DeMuynck, B. M., Paneque, A. N., Rutherford, J. E. & Nagib, D. A. Carbene reactivity from alkyl and aryl aldehydes. Science 377, 649–654 (2022).
Chiusoli, G. P., Costa, M., Pecchini, G. & Cometti, G. Synthesis of ketones from aroyl chlorides and nickel(0) complexes. Transit. Met. Chem. 2, 270–272 (1977).
Su, Z.-M., Deng, R. & Stahl, S. S. Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling. Nat. Chem. 16, 2036–2043 (2024).
Rasmussen, J. K., Krepski, L. R., Heilmann, S. M., Ii, H. K. S. & Tumey, M. L. A convenient synthesis of 1,2-bis[trimethylsiloxy]alkenes from α-diketones. Synthesis 1983, 457–459 (2002).
Tanaka, Y. & Yamashita, M. Acid anhydrides as alternatives to acid chlorides in the palladium-catalyzed reaction with silacyclobutanes. Appl. Organomet. Chem. 16, 51–54 (2002).
Shen, Z. & Dong, V. M. Benzofurans prepared by C–H bond functionalization with acylsilanes. Angew. Chem. Int. Ed. 48, 784–786 (2009).
Becker, P., Priebbenow, D. L., Pirwerdjan, R. & Bolm, C. Acylsilanes in rhodium(III)-catalyzed directed aromatic C–H alkenylations and siloxycarbene reactions with C–C double bonds. Angew. Chem. Int. Ed. 53, 269–271 (2014).
Priebbenow, D. L. Insights into the stability of siloxy carbene intermediates and their corresponding oxocarbenium ions. J. Org. Chem. 84, 11813–11822 (2019).
Doyle, M. P. Electrophilic metal carbenes as reaction intermediates in catalytic reactions. Acc. Chem. Res. 19, 348–356 (1986).
Zhou, M., Lankelma, M., van der Vlugt, J. I. & de Bruin, B. Catalytic synthesis of 8-membered ring compounds via cobalt(III)-carbene radicals. Angew. Chem. Int. Ed. 59, 11073–11079 (2020).
Epping, R. F. J., Vesseur, D., Zhou, M. & de Bruin, B. Carbene radicals in transition-metal-catalyzed reactions. ACS Catal. 13, 5428–5448 (2023).
Liu, M. & Uyeda, C. Redox approaches to carbene generation in catalytic cyclopropanation reactions. Angew. Chem. Int. Ed. 63, e202406218 (2024).
Burés, J. Variable time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angew. Chem. Int. Ed. 55, 16084–16087 (2016).
Gandeepan, P. & Cheng, C.-H. Cobalt catalysis involving π components in organic synthesis. Acc. Chem. Res. 48, 1194–1206 (2015).
Amatore, M. & Gosmini, C. Efficient cobalt-catalyzed formation of unsymmetrical biaryl compounds and its application in the synthesis of a sartan intermediate. Angew. Chem. Int. Ed. 47, 2089–2092 (2008).
Dorval, C., Tricoire, M., Begouin, J.-M., Gandon, V. & Gosmini, C. Cobalt-catalyzed C(sp2)–CN bond activation: cross-electrophile coupling for biaryl formation and mechanistic insight. ACS Catal. 10, 12819–12827 (2020).
Lee, W.-C. C., Wang, D.-S., Zhu, Y. & Zhang, X. P. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nat. Chem. 15, 1569–1580 (2023).
Lee, W.-C. C. & Zhang, X. P. Metalloradical catalysis: general approach for controlling reactivity and selectivity of homolytic radical reactions. Angew. Chem. Int. Ed. 63, e202320243 (2024).
Nguyen, K. N. M. et al. Harnessing carbene polarity: Unified catalytic access to donor, neutral, and acceptor carbenes. Science 389, 183–189 (2025).
Chen, Y., Ruppel, J. V. & Zhang, X. P. Cobalt-catalyzed asymmetric cyclopropanation of electron-deficient olefins. J. Am. Chem. Soc. 129, 12074–12075 (2007).
Furukawa, J., Kawabata, N. & Nishimura, J. Synthesis of cyclopropanes by the reaction of olefins with dialkylzinc and methylene iodide. Tetrahedron 24, 53–58 (1968).
Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).
Acknowledgements
Financial support from the National Science Foundation (NSF CAT CHE 2400341) is gratefully acknowledged. We thank Q. N. Wong, J. Lee and B. Orzolek for analysis and glovebox provision, L. Pasternack and G. J. Kroon for assistance with NMR spectroscopy and M. Gembicky, S. Yang, J. Bailey and the entire UCSD Crystallography Facility for X-ray crystallographic analysis. We thank M. A. Smith and J. J. Rojas for manuscript review and D. G. Blackmond for helpful mechanistic discussions.
Author information
Authors and Affiliations
Contributions
L.K., K.Z. and R.S. conceived the concept. L.K., K.Z. and J.G. designed, conducted and analysed the experiments. L.K., K.Z. and R.S. wrote the paper, L.K. and K.Z. compiled the Supplementary Information and R.S. provided editorial feedback and oversight.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–30, procedures, discussion, references, X-ray crystallography data and NMR spectra.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kong, L., Zong, K., Guo, J. et al. Catalytic acyloin-type heterocoupling of thioesters via a putative cobalt siloxycarbene. Nat. Chem. (2026). https://doi.org/10.1038/s41557-025-02036-y
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41557-025-02036-y


