Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Incorporating aridity in soil carbon stewardship frameworks

Stewardship of soil carbon sits at the nexus of efforts to mitigate climate change, improve soil health and increase climate resiliency of agricultural production. Unlocking the full potential of soils to support a sustainable future requires embracing the unique and contrasting realities of soil carbon dynamics in arid versus humid systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In arid and humid systems, soil carbon cycling and effective stewardship strategies differ.

References

  1. Janzen, H. H. Eur. J. Soil Sci. 75, e13536 (2024).

    Article  Google Scholar 

  2. Ontl, T. A. & Schulte, L. A. Nat. Educ. Knowled. 3, 35 (2012).

    Google Scholar 

  3. Sharififar, A. et al. in Advances in Agronomy (ed. Sparks, D. L.) Vol. 178, 165–231 (Academic Press, 2023).

  4. Hartmann, J. et al. Rev. Geophys. 51, 113–149 (2013).

    Article  Google Scholar 

  5. Paustian, K. et al. Carbon Manage. 10, 567–587 (2019).

    Article  CAS  Google Scholar 

  6. Chapin, F. S. III et al. J. Ecol. 97, 840–850 (2009).

    Article  CAS  Google Scholar 

  7. Naorem, A. et al. Agriculture 12, 1256 (2022).

    Article  CAS  Google Scholar 

  8. Shi, B. et al. Sci. Adv. 10, eadq2654 (2024).

    Article  CAS  Google Scholar 

  9. Plaza-Bonilla, D. et al. Agron. Sustain. Develop. 35, 1319–1334 (2015).

    Article  Google Scholar 

  10. Six, J. et al. Glob. Change Biol. 10, 155–160 (2004).

    Article  Google Scholar 

  11. Zamanian, K., Zhou, J. & Kuzyakov, Y. Geoderma 384, 114817 (2021).

    Article  CAS  Google Scholar 

  12. Bai, X. et al. Catena 231, 107343 (2023).

    Article  CAS  Google Scholar 

  13. Ryals, R. & Silver, W. L. Ecol. Appl. 23, 46–59 (2013).

    Article  Google Scholar 

  14. Hansen, P. M. et al. Glob. Change Biol. 30, e17080 (2024).

    Article  CAS  Google Scholar 

  15. Peng, S. et al. Nat. Water 2, 1071–1081 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation Division of Environmental Biology award number 2016003 and an award from King Philanthropies to the Environmental Defense Fund.

Author information

Authors and Affiliations

Authors

Contributions

M.F.C. and J.M.L. conceived the idea, and wrote and edited the paper.

Corresponding author

Correspondence to M. Francesca Cotrufo.

Ethics declarations

Competing interests

M.F.C. is the co-founder and Scientific Director of Cquester Analytics LLC. J.M.L. declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotrufo, M.F., Lavallee, J.M. Incorporating aridity in soil carbon stewardship frameworks. Nat. Clim. Chang. 15, 240–242 (2025). https://doi.org/10.1038/s41558-025-02270-9

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-025-02270-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology