Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant nutrient acquisition under elevated CO2 and implications for the land carbon sink

Abstract

Terrestrial ecosystems currently sequester around one-third of the anthropogenic carbon emitted each year, slowing the pace of climate change. However, the future of this sink under rising atmospheric CO2 concentrations remains uncertain, in part due to the impact that nutrient limitation may have on plant biomass. Here we review plant nutrient acquisition strategies and evidence of the enhanced utilization of these strategies under experimental and real-world elevated CO2. Many of the strategies that are key to alleviating nutrient limitation under elevated CO2 are not well represented in current Earth system models, and a simple data-driven analysis implies that models that do not account for nutrient acquisition strategies could underestimate the land sink.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies used by plants to alleviate N and P limitation of biomass under eCO2.
Fig. 2: Ecosystem carbon pools tend to increase under eCO2.
Fig. 3: Future increases in nutrient supply may support a substantial land C sink.

Similar content being viewed by others

References

  1. Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    Article  CAS  Google Scholar 

  2. Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    Article  CAS  Google Scholar 

  3. Liang, X. et al. Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Glob. Change Biol. 26, 3585–3600 (2020).

    Article  Google Scholar 

  4. Fisher, J. B., Badgley, G. & Blyth, E. Global nutrient limitation in terrestrial vegetation. Glob. Biogeochem. Cycles 26, GB3007 (2012).

    Article  Google Scholar 

  5. Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).

    Article  Google Scholar 

  6. Yang, X., Post, W. M., Thornton, P. E. & Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10, 2525–2537 (2013).

    Article  CAS  Google Scholar 

  7. Christin, P.-A. & Osborne, C. P. The evolutionary ecology of C4 plants. N. Phytol. 204, 765–781 (2014).

    Article  CAS  Google Scholar 

  8. Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 229, 2413–2445 (2021).

    Article  CAS  Google Scholar 

  9. Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to rising CO2. Nat. Clim. Change 13, 1376–1381 (2023).

    Article  CAS  Google Scholar 

  10. Ruehr, S. et al. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 4, 518–534 (2023).

    Article  CAS  Google Scholar 

  11. Friedlingstein, P. et al. Global carbon budget 2024. Earth Syst. Sci. Data https://doi.org/10.5194/essd-2024-519 (2024).

  12. Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).

    Article  Google Scholar 

  13. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    Article  CAS  Google Scholar 

  14. Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. & Field, C. B. Nitrogen and climate change. Science 302, 1512–1513 (2003).

    Article  CAS  Google Scholar 

  15. Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54, 731 (2004).

    Article  Google Scholar 

  16. Averill, C., Rousk, J. & Hawkes, C. Microbial-mediated redistribution of ecosystem nitrogen cycling can delay progressive nitrogen limitation. Biogeochemistry 126, 11–23 (2015).

    Article  CAS  Google Scholar 

  17. Walker, A. P. et al. Predicting long‐term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? Glob. Biogeochem. Cycles 29, 476–495 (2015).

    Article  CAS  Google Scholar 

  18. Hobbie, S. E. Effects of plant species on nutrient cycling. Trends Ecol. Evol. 7, 336–339 (1992).

    Article  CAS  Google Scholar 

  19. Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. N. Phytol. 217, 507–522 (2018).

    Article  CAS  Google Scholar 

  20. Feng, Z. et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Change Biol. 21, 3152–3168 (2015).

    Article  Google Scholar 

  21. Zheng, M. et al. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Glob. Change Biol. 26, 6203–6217 (2020).

    Article  Google Scholar 

  22. Braakhekke, M. C. et al. Nitrogen leaching from natural ecosystems under global change: a modelling study. Earth Syst. Dynam. 8, 1121–1139 (2017).

    Article  Google Scholar 

  23. Rütting, T. & Andresen, L. C. in Advances in Ecological Research Vol. 68 (eds Bohan, D. A. & Dumbrell, A. J.) 51–62 (Academic, 2023).

  24. Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87, 53–63 (2006).

    Article  Google Scholar 

  25. Schlesinger, W. & Bernhardt, E. Biogeochemistry: An Analysis of Global Change 3rd edn (Academic Press, 2013).

  26. Kawamiya, M., Hajima, T., Tachiiri, K., Watanabe, S. & Yokohata, T. Two decades of Earth system modeling with an emphasis on Model for Interdisciplinary Research on Climate (MIROC). Prog. Earth Planet. Sci. 7, 64 (2020).

    Article  Google Scholar 

  27. Stocker, B. D. et al. Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions. N. Phytol. 245, 49–68 (2025).

    Article  Google Scholar 

  28. Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. N. Phytol. 202, 803–822 (2014).

    Article  CAS  Google Scholar 

  29. Thomas, R. Q., Zaehle, S., Templer, P. H. & Goodale, C. L. Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations. Glob. Change Biol. 19, 2986–2998 (2013).

    Article  Google Scholar 

  30. Davies-Barnard, T. et al. Nitrogen cycling in CMIP6 land surface models: progress and limitations. Biogeosciences 17, 5129–5148 (2020).

    Article  CAS  Google Scholar 

  31. Stocker, B. D. et al. Terrestrial nitrogen cycling in Earth system models revisited. N. Phytol. 210, 1165–1168 (2016).

    Article  Google Scholar 

  32. Davies-Barnard, T. & Friedlingstein, P. The global distribution of biological nitrogen fixation in terrestrial natural ecosystems. Glob. Biogeochem. Cycles 34, e2019GB006387 (2020).

    Article  CAS  Google Scholar 

  33. Rousk, K., Jones, D. L. & DeLuca, T. H. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front. Microbiol. 4, 150 (2013).

    Article  CAS  Google Scholar 

  34. Moreira, J. C. F. et al. Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: changing nitrogen cycle paradigms. Sci. Total Environ. 773, 145066 (2021).

    Article  CAS  Google Scholar 

  35. Soper, F. M. et al. A roadmap for sampling and scaling biological nitrogen fixation in terrestrial ecosystems. Methods Ecol. Evol. 12, 1122–1137 (2021).

    Article  Google Scholar 

  36. Liang, J., Qi, X., Souza, L. & Luo, Y. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences 13, 2689–2699 (2016).

    Article  CAS  Google Scholar 

  37. Cui, J. et al. Elevated CO2 levels promote both carbon and nitrogen cycling in global forests. Nat. Clim. Change 14, 511–517 (2024).

    Article  CAS  Google Scholar 

  38. Oono, R., Ho, R. & Jimenez Salinas, A. The direct and interactive effects of elevated CO2 and additional nitrate on relative costs and benefits of legume-rhizobia symbiosis. Symbiosis 84, 209–220 (2021).

    Article  CAS  Google Scholar 

  39. Li, Y. et al. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Front. Plant Sci. 8, 1546 (2017).

    Article  Google Scholar 

  40. Yu, Y. et al. Divergent responses of the diazotrophic microbiome to elevated CO2 in two rice cultivars. Front. Microbiol. 9, 1139 (2018).

    Article  Google Scholar 

  41. Chen, H. & Markham, J. Ancient CO2 levels favor nitrogen fixing plants over a broader range of soil N compared to present. Sci. Rep. 11, 3038 (2021).

    Article  CAS  Google Scholar 

  42. Cernusak, L. A. et al. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol. 157, 372–385 (2011).

    Article  CAS  Google Scholar 

  43. Coskun, D., Britto, D. T. & Kronzucker, H. J. Nutrient constraints on terrestrial carbon fixation: the role of nitrogen. J. Plant Physiol. 203, 95–109 (2016).

    Article  CAS  Google Scholar 

  44. Hungate, B. A. et al. CO2 elicits long-term decline in nitrogen fixation. Science 304, 1291 (2004).

    Article  CAS  Google Scholar 

  45. Arndal, M. F., Tolver, A., Larsen, K. S., Beier, C. & Schmidt, I. K. Fine root growth and vertical distribution in response to elevated CO2, warming and drought in a mixed heathland–grassland. Ecosystems 21, 15–30 (2018).

    Article  CAS  Google Scholar 

  46. van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article  Google Scholar 

  47. Hodge, A., Helgason, T. & Fitter, A. H. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 3, 267–273 (2010).

    Article  Google Scholar 

  48. Beidler, K. V. et al. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. N. Phytol. 205, 1153–1163 (2015).

    Article  CAS  Google Scholar 

  49. Ziegler, C. et al. Quantification and uncertainty of root growth stimulation by elevated CO2 in a mature temperate deciduous forest. Sci. Total Environ. 854, 158661 (2023).

    Article  CAS  Google Scholar 

  50. Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    Article  Google Scholar 

  51. Li, F. et al. Trade‐off in the partitioning of recent photosynthate carbon under global change. Glob. Change Biol. 30, e17110 (2024).

    Article  CAS  Google Scholar 

  52. Dong, Y., Wang, Z., Sun, H., Yang, W. & Xu, H. The response patterns of arbuscular mycorrhizal and ectomycorrhizal symbionts under elevated CO2: a meta-analysis. Front. Microbiol. 9, 1248 (2018).

    Article  Google Scholar 

  53. Alberton, O., Kuyper, T. W. & Gorissen, A. Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. N. Phytol. 167, 859–868 (2005).

    Article  CAS  Google Scholar 

  54. Treseder, K. K. A. meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. N. Phytol. 164, 347–355 (2004).

    Article  Google Scholar 

  55. Bastida, F. et al. Global ecological predictors of the soil priming effect. Nat. Commun. 10, 3481 (2019).

    Article  Google Scholar 

  56. Huo, C., Luo, Y. & Cheng, W. Rhizosphere priming effect: a meta-analysis. Soil Biol. Biochem. 111, 78–84 (2017).

    Article  CAS  Google Scholar 

  57. Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).

    Article  CAS  Google Scholar 

  58. Paterson, E., Sim, A., Davidson, J. & Daniell, T. J. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant Soil 408, 243–254 (2016).

    Article  CAS  Google Scholar 

  59. Stuart, E. K. & Plett, K. L. Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses. Front. Plant Sci. 10, 1658 (2020).

    Article  Google Scholar 

  60. Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).

    Article  CAS  Google Scholar 

  61. Cheng, L. et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337, 1084–1087 (2012).

    Article  CAS  Google Scholar 

  62. Ma, W. et al. Root exudates contribute to belowground ecosystem hotspots: a review. Front. Microbiol. 13, 937940 (2022).

    Article  Google Scholar 

  63. Dong, J. et al. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: a review. Sci. Total Environ. 754, 142434 (2021).

    Article  CAS  Google Scholar 

  64. Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: a meta-analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).

    Article  Google Scholar 

  65. Andresen, L. C. et al. Nitrogen dynamics after two years of elevated CO2in phosphorus limited Eucalyptus woodland. Biogeochemistry 150, 297–312 (2020).

    Article  CAS  Google Scholar 

  66. Talbot, J. M., Allison, S. D. & Treseder, K. K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 22, 955–963 (2008).

    Article  Google Scholar 

  67. Pritchard, S. G. et al. Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air enrichment and soil N fertilization for 6 years. Glob. Change Biol. 20, 1313–1326 (2014).

    Article  Google Scholar 

  68. Bunn, R. A. et al. What determines transfer of carbon from plants to mycorrhizal fungi? N. Phytol. 244, 1199–1215 (2024).

    Article  Google Scholar 

  69. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Colin, I. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 6294 (2016).

    Article  Google Scholar 

  70. Vitousek, P. Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553–572 (1982).

    Article  Google Scholar 

  71. Seibert, R. et al. Plant functional types differ in their long-term nutrient response to eCO2 in an extensive grassland. Ecosystems 25, 1084–1095 (2022).

    Article  CAS  Google Scholar 

  72. Jiang, M. et al. Low phosphorus supply constrains plant responses to elevated CO2: a meta‐analysis. Glob. Change Biol. 26, 5856–5873 (2020).

    Article  Google Scholar 

  73. Sardans, J. et al. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Change Biol. 23, 3849–3856 (2017).

    Article  Google Scholar 

  74. Du, C., Wang, X., Zhang, M., Jing, J. & Gao, Y. Effects of elevated CO2 on plant C-N-P stoichiometry in terrestrial ecosystems: a meta-analysis. Sci. Total Environ. 650, 697–708 (2019).

    Article  CAS  Google Scholar 

  75. Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).

    Article  Google Scholar 

  76. Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Biol. 3, 125 (2020).

    Article  CAS  Google Scholar 

  77. Dong, N. et al. Leaf nitrogen from the perspective of optimal plant function. J. Ecol. 110, 2585–2602 (2022).

    Article  CAS  Google Scholar 

  78. Weil, R. & Brady, N. The Nature and Properties of Soils 15th edn (Pearson, 2017).

  79. Deng, Q. et al. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology 96, 3354–3362 (2015).

    Article  Google Scholar 

  80. Margalef, O. et al. The effect of global change on soil phosphatase activity. Glob. Change Biol. 27, 5989–6003 (2021).

    Article  CAS  Google Scholar 

  81. Hasegawa, S., Macdonald, C. A. & Power, S. A. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob. Change Biol. 22, 1628–1643 (2016).

    Article  Google Scholar 

  82. Jiang, M. et al. Microbial competition for phosphorus limits the CO2 response of a mature forest. Nature 630, 660–665 (2024).

    Article  CAS  Google Scholar 

  83. Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).

    Article  CAS  Google Scholar 

  84. Wang, B. et al. Air warming and CO2 enrichment cause more ammonia volatilization from rice paddies: an OTC field study. Sci. Total Environ. 752, 142071 (2021).

    Article  CAS  Google Scholar 

  85. Liu, C., Bol, R., Ju, X., Tian, J. & Wu, D. Trade-offs on carbon and nitrogen availability lead to only a minor effect of elevated CO2 on potential denitrification in soil. Soil Biol. Biochem. 176, 108888 (2023).

    Article  CAS  Google Scholar 

  86. Gineyts, R. & Niboyet, A. Nitrification, denitrification, and related functional genes under elevated CO2: a meta‐analysis in terrestrial ecosystems. Glob. Change Biol. 29, 1839–1853 (2023).

    Article  CAS  Google Scholar 

  87. Xu-Ri, Prentice, I. C., Spahni, R. & Niu, H. S. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. N. Phytol. 196, 472–488 (2012).

    Article  CAS  Google Scholar 

  88. Wright, I. J. & Westoby, M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct. Ecol. 17, 10–19 (2003).

    Article  Google Scholar 

  89. Killingbeck, K. T. in Plant Cell Death Processes (ed. Noodén, L. D.) 215–226 (Academic, 2004).

  90. Sun, X. et al. Widespread controls of leaf nutrient resorption by nutrient limitation and stoichiometry. Funct. Ecol. 37, 1653–1662 (2023).

    Article  CAS  Google Scholar 

  91. Li, L., Wang, X. & Manning, W. J. Effects of elevated CO2 on leaf senescence, leaf nitrogen resorption, and late-season photosynthesis in Tilia americana L. Front. Plant Sci. 10, 1217 (2019).

    Article  Google Scholar 

  92. Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant Sci. 10, 664 (2019).

    Article  Google Scholar 

  93. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  94. Canadell, J. G. & Monteiro, P. M. S. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 5 (IPCC, Cambridge Univ. Press, 2023).

  95. Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).

    Article  CAS  Google Scholar 

  96. Meyerholt, J. & Zaehle, S. Controls of terrestrial ecosystem nitrogen loss on simulated productivity responses to elevated CO2. Biogeosciences 15, 5677–5698 (2018).

    Article  CAS  Google Scholar 

  97. Wei, N. et al. Nutrient limitations lead to a reduced magnitude of disequilibrium in the global terrestrial carbon cycle. J. Geophys. Res. Biogeosci. 127, e2021JG006764 (2022).

    Article  CAS  Google Scholar 

  98. Gier, B. K. et al. Representation of the terrestrial carbon cycle in CMIP6. Biogeosciences 21, 5321–5360 (2024).

    Article  Google Scholar 

  99. Cleveland, C. C. et al. Global patterns of terrestrial biological nitrogen (N 2) fixation in natural ecosystems. Glob. Biogeochem. Cycles 13, 623–645 (1999).

    Article  CAS  Google Scholar 

  100. Thomas, R. Q., Brookshire, E. N. J. & Gerber, S. Nitrogen limitation on land: how can it occur in Earth system models? Glob. Change Biol. 21, 1777–1793 (2015).

    Article  Google Scholar 

  101. Brzostek, E. R., Fisher, J. B. & Phillips, R. P. Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. J. Geophys. Res. Biogeosci. 119, 1684–1697 (2014).

    Article  Google Scholar 

  102. Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).

    Article  Google Scholar 

  103. Ziehn, T. et al. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).

    Article  Google Scholar 

  104. Fisher, J. B. et al. Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Glob. Biogeochem. Cycles 24, GB1014 (2010).

    Article  Google Scholar 

  105. Yu, T. & Zhuang, Q. Modeling biological nitrogen fixation in global natural terrestrial ecosystems. Biogeosciences 17, 3643–3657 (2020).

    Article  CAS  Google Scholar 

  106. Kou-Giesbrecht, S. et al. A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF). Biogeosciences 18, 4143–4183 (2021).

    Article  CAS  Google Scholar 

  107. Vitousek, P. M., Treseder, K. K., Howarth, R. W. & Menge, D. N. L. A “toy model” analysis of causes of nitrogen limitation in terrestrial ecosystems. Biogeochemistry 160, 381–394 (2022).

    Article  CAS  Google Scholar 

  108. Peng, J. et al. Global carbon sequestration is highly sensitive to model-based formulations of nitrogen fixation. Glob. Biogeochem. Cycles 34, e2019GB006296 (2020).

    Article  CAS  Google Scholar 

  109. Davies-Barnard, T., Zaehle, S. & Friedlingstein, P. Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 Eearth system models. Biogeosciences 19, 3491–3503 (2022).

    Article  CAS  Google Scholar 

  110. Drewniak, B. A. Simulating dynamic roots in the Energy Exascale Earth System Land Model. J. Adv. Model. Earth Syst. 11, 338–359 (2019).

    Article  Google Scholar 

  111. Bouda, M. & Saiers, J. E. Dynamic effects of root system architecture improve root water uptake in 1-D process-based soil-root hydrodynamics. Adv. Water Resour. 110, 319–334 (2017).

    Article  Google Scholar 

  112. Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. N. Phytol. 232, 1123–1158 (2021).

    Article  Google Scholar 

  113. Warren, J. M. et al. Root structural and functional dynamics in terrestrial biosphere models: evaluation and recommendations. N. Phytol. 205, 59–78 (2015).

    Article  Google Scholar 

  114. Gutjahr, O. et al. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).

    Article  CAS  Google Scholar 

  115. Guenet, B. et al. Impact of priming on global soil carbon stocks. Glob. Change Biol. 24, 1873–1883 (2018).

    Article  Google Scholar 

  116. Dong, N., Dechant, B., Wang, H., Wright, I. J. & Prentice, I. C. Global leaf-trait mapping based on optimality theory. Glob. Ecol. Biogeogr. 32, 1152–1162 (2023).

    Article  Google Scholar 

  117. Xu, H., Wang, H., Prentice, I. C. & Harrison, S. P. Leaf carbon and nitrogen stoichiometric variation along environmental gradients. Biogeosciences 20, 4511–4525 (2023).

    Article  CAS  Google Scholar 

  118. Knox, R. G. et al. Nutrient dynamics in a coupled terrestrial biosphere and land model (ELM-FATES-CNP). J. Adv. Model. Earth Syst. 16, e2023MS003689 (2024).

    Article  Google Scholar 

  119. Sheng, M. et al. Long-term leaf C:N ratio change under elevated CO2 and nitrogen deposition in China: evidence from observations and process-based modeling. Sci. Total Environ. 800, 149591 (2021).

    Article  CAS  Google Scholar 

  120. Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).

    Article  Google Scholar 

  121. Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S. & Medlyn, B. E. Towards a more physiological representation of vegetation phosphorus processes in land surface models. N. Phytol. 222, 1223–1229 (2019).

    Article  Google Scholar 

  122. Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).

    Article  CAS  Google Scholar 

  123. Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article  CAS  Google Scholar 

  124. Wang, Z. & Wang, C. Magnitude and mechanisms of nitrogen‐mediated responses of tree biomass production to elevated CO2: a global synthesis. J. Ecol. 109, 4038–4055 (2021).

    Article  CAS  Google Scholar 

  125. Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    Article  CAS  Google Scholar 

  126. Piñeiro, J. et al. Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: a global assessment. Sci. Rep. 7, 15355 (2017).

    Article  Google Scholar 

  127. Maier, C. A. et al. The response of coarse root biomass to long-term CO2 enrichment and nitrogen application in a maturing Pinus taeda stand with a large broadleaved component. Glob. Change Biol. 28, 1458–1476 (2022).

    Article  CAS  Google Scholar 

  128. Iversen, C. M., Keller, J. K., Garten, C. T. & Norby, R. J. Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2‐enrichment. Glob. Change Biol. 18, 1684–1697 (2012).

    Article  Google Scholar 

  129. Talhelm, A. F., Pregitzer, K. S. & Zak, D. R. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecol. Lett. 12, 1219–1228 (2009).

    Article  Google Scholar 

  130. Hungate, B. A. et al. Nitrogen inputs and losses in response to chronic CO2 exposure in a subtropical oak woodland. Biogeosciences 11, 3323–3337 (2014).

    Article  Google Scholar 

  131. Peng, Y. et al. Global terrestrial nitrogen uptake and nitrogen use efficiency. J. Ecol. 111, 2676–2693 (2023).

    Article  CAS  Google Scholar 

  132. Zaehle, S. Terrestrial nitrogen–carbon cycle interactions at the global scale. Phil. Trans. R. Soc. B 368, 20130125 (2013).

    Article  CAS  Google Scholar 

  133. Nadelhoffer, K. J. et al. Nitrogen deposition and carbon sequestration. Nature 400, 630 (1999).

    Article  CAS  Google Scholar 

  134. Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).

    Article  CAS  Google Scholar 

  135. Thomas, R., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010).

    Article  Google Scholar 

  136. de Vries, W., Du, E. & Butterbach-Bahl, K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr. Opin. Environ. Sustain. 9–10, 90–104 (2014).

    Article  Google Scholar 

  137. Wang, R. et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Change Biol. 23, 4854–4872 (2017).

    Article  Google Scholar 

  138. Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).

    Article  CAS  Google Scholar 

  139. Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).

    Article  CAS  Google Scholar 

  140. Bauters, M. et al. Century-long apparent decrease in intrinsic water-use efficiency with no evidence of progressive nutrient limitation in African tropical forests. Glob. Change Biol. 26, 4449–4461 (2020).

    Article  Google Scholar 

  141. Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).

    Article  CAS  Google Scholar 

  142. Kanakidou, M. et al. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. https://doi.org/10.1175/JAS-D-15-0278.1 (2016).

  143. Jones, C. D. et al. C4MIP – the Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

    Article  CAS  Google Scholar 

  144. Norby, R. J. et al. Enhanced woody biomass production in a mature temperate forest under elevated CO2. Nat. Clim. Change 14, 983–988 (2024).

    Article  CAS  Google Scholar 

  145. Rammig, A. & Lapola, D. AmazonFACE – a large-scale free air CO2 enrichment experiment in the Amazon rainforest. EGU General Assembly 2024 https://doi.org/10.5194/egusphere-egu24-5418 (2024).

  146. Korner, C. A matter of tree longevity. Science 355, 130–131 (2017).

  147. Bogue, R. R. et al. Plant responses to volcanically elevated CO2 in two Costa Rican forests. Biogeosciences 16, 1343–1360 (2019).

    Article  CAS  Google Scholar 

  148. Cawse-Nicholson, K. et al. Ecosystem responses to elevated CO2 using airborne remote sensing at Mammoth Mountain, California. Biogeosciences 15, 7403–7418 (2018).

    Article  CAS  Google Scholar 

  149. Chari, N. R. et al. Estimating the global root exudate carbon flux. Biogeochemistry 167, 895–908 (2024).

    Article  CAS  Google Scholar 

  150. Hawkins, H.-J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023).

    Article  Google Scholar 

  151. Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, e2022MS003204 (2022).

    Article  CAS  Google Scholar 

  152. Jayawardena, D. M., Heckathorn, S. A. & Boldt, J. K. A meta-analysis of the combined effects of elevated carbon dioxide and chronic warming on plant %N, protein content and N-uptake rate. AoB Plants 13, plab031 (2021).

    Article  Google Scholar 

  153. Osanai, Y., Janes, J. K., Newton, P. C. D. & Hovenden, M. J. Warming and elevated CO2 combine to increase microbial mineralisation of soil organic matter. Soil Biol. Biochem. 85, 110–118 (2015).

    Article  CAS  Google Scholar 

  154. Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 221, 32–49 (2019).

    Article  CAS  Google Scholar 

  155. Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).

    Article  CAS  Google Scholar 

  156. Law, R. M. et al. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – part 1: model description and pre-industrial simulation. Geosci. Model Dev. 10, 2567–2590 (2017).

    Article  CAS  Google Scholar 

  157. Lawrence, D. M. et al. The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Article  Google Scholar 

  158. Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).

    Article  Google Scholar 

  159. Ito, A. & Inatomi, M. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 9, 759–773 (2012).

    Article  CAS  Google Scholar 

  160. Reick, C. H. et al. JSBACH 3—The land component of the MPI Earth System Model: documentation of version 3.2. Ber. Erd. https://doi.org/10.17617/2.3279802 (2021).

  161. Mathison, C. et al. Description and evaluation of the JULES-ES set-up for ISIMIP2b. Geosci. Model Dev. 16, 4249–4264 (2023).

    Article  Google Scholar 

  162. Wiltshire, A. J. et al. JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geosci. Model Dev. 14, 2161–2186 (2021).

    Article  CAS  Google Scholar 

  163. Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).

    Article  Google Scholar 

  164. Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    Article  Google Scholar 

  165. Oleson, K. W. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2013).

Download references

Acknowledgements

This Review is based on work supported by the National Science Foundation under grant number DEB-2339051. T.W.C. acknowledges funding from the MIT Presidential Fellowship Program. J.B.F. acknowledges support from the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science programme under award numbers DE-SC0008317 and DE-SC0016188, and a National Science Foundation Research Coordination Grant (INCyTE; grant number DEB-1754126) to investigate nutrient cycling in terrestrial ecosystems. B.D.S. was funded by the Swiss National Science Foundation under grant number PCEFP2_181115. T.K. acknowledges support from the RUBISCO SFA, which is sponsored by the Regional and Global Model Analysis (RGMA) Program in the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) in the US Department of Energy, Office of Science, and additional support from a DOE Early Career Research Program award (number DE-SC0021023) and NASA award numbers 80NSSC21K1705 and 80NSSC24K0600. This work is a contribution to the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, supported by Schmidt Sciences LLC (I.C.P., B.D.S. and T.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.W.C., C.T., B.D.S., T.K. and I.C.P. designed the analysis. T.W.C. performed the analysis and wrote the paper. All authors contributed ideas to the analysis, interpretation of results and/ or manuscript revisions.

Corresponding authors

Correspondence to Trevor W. Cambron or César Terrer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Andrew Wiltshire, Jianyang Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambron, T.W., Fisher, J.B., Hungate, B.A. et al. Plant nutrient acquisition under elevated CO2 and implications for the land carbon sink. Nat. Clim. Chang. 15, 935–946 (2025). https://doi.org/10.1038/s41558-025-02386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-025-02386-y

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology