Abstract
Terrestrial ecosystems currently sequester around one-third of the anthropogenic carbon emitted each year, slowing the pace of climate change. However, the future of this sink under rising atmospheric CO2 concentrations remains uncertain, in part due to the impact that nutrient limitation may have on plant biomass. Here we review plant nutrient acquisition strategies and evidence of the enhanced utilization of these strategies under experimental and real-world elevated CO2. Many of the strategies that are key to alleviating nutrient limitation under elevated CO2 are not well represented in current Earth system models, and a simple data-driven analysis implies that models that do not account for nutrient acquisition strategies could underestimate the land sink.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).
Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).
Liang, X. et al. Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Glob. Change Biol. 26, 3585–3600 (2020).
Fisher, J. B., Badgley, G. & Blyth, E. Global nutrient limitation in terrestrial vegetation. Glob. Biogeochem. Cycles 26, GB3007 (2012).
Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).
Yang, X., Post, W. M., Thornton, P. E. & Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10, 2525–2537 (2013).
Christin, P.-A. & Osborne, C. P. The evolutionary ecology of C4 plants. N. Phytol. 204, 765–781 (2014).
Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 229, 2413–2445 (2021).
Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to rising CO2. Nat. Clim. Change 13, 1376–1381 (2023).
Ruehr, S. et al. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 4, 518–534 (2023).
Friedlingstein, P. et al. Global carbon budget 2024. Earth Syst. Sci. Data https://doi.org/10.5194/essd-2024-519 (2024).
Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).
Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).
Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. & Field, C. B. Nitrogen and climate change. Science 302, 1512–1513 (2003).
Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54, 731 (2004).
Averill, C., Rousk, J. & Hawkes, C. Microbial-mediated redistribution of ecosystem nitrogen cycling can delay progressive nitrogen limitation. Biogeochemistry 126, 11–23 (2015).
Walker, A. P. et al. Predicting long‐term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? Glob. Biogeochem. Cycles 29, 476–495 (2015).
Hobbie, S. E. Effects of plant species on nutrient cycling. Trends Ecol. Evol. 7, 336–339 (1992).
Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. N. Phytol. 217, 507–522 (2018).
Feng, Z. et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Change Biol. 21, 3152–3168 (2015).
Zheng, M. et al. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Glob. Change Biol. 26, 6203–6217 (2020).
Braakhekke, M. C. et al. Nitrogen leaching from natural ecosystems under global change: a modelling study. Earth Syst. Dynam. 8, 1121–1139 (2017).
Rütting, T. & Andresen, L. C. in Advances in Ecological Research Vol. 68 (eds Bohan, D. A. & Dumbrell, A. J.) 51–62 (Academic, 2023).
Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87, 53–63 (2006).
Schlesinger, W. & Bernhardt, E. Biogeochemistry: An Analysis of Global Change 3rd edn (Academic Press, 2013).
Kawamiya, M., Hajima, T., Tachiiri, K., Watanabe, S. & Yokohata, T. Two decades of Earth system modeling with an emphasis on Model for Interdisciplinary Research on Climate (MIROC). Prog. Earth Planet. Sci. 7, 64 (2020).
Stocker, B. D. et al. Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions. N. Phytol. 245, 49–68 (2025).
Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. N. Phytol. 202, 803–822 (2014).
Thomas, R. Q., Zaehle, S., Templer, P. H. & Goodale, C. L. Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations. Glob. Change Biol. 19, 2986–2998 (2013).
Davies-Barnard, T. et al. Nitrogen cycling in CMIP6 land surface models: progress and limitations. Biogeosciences 17, 5129–5148 (2020).
Stocker, B. D. et al. Terrestrial nitrogen cycling in Earth system models revisited. N. Phytol. 210, 1165–1168 (2016).
Davies-Barnard, T. & Friedlingstein, P. The global distribution of biological nitrogen fixation in terrestrial natural ecosystems. Glob. Biogeochem. Cycles 34, e2019GB006387 (2020).
Rousk, K., Jones, D. L. & DeLuca, T. H. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front. Microbiol. 4, 150 (2013).
Moreira, J. C. F. et al. Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: changing nitrogen cycle paradigms. Sci. Total Environ. 773, 145066 (2021).
Soper, F. M. et al. A roadmap for sampling and scaling biological nitrogen fixation in terrestrial ecosystems. Methods Ecol. Evol. 12, 1122–1137 (2021).
Liang, J., Qi, X., Souza, L. & Luo, Y. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences 13, 2689–2699 (2016).
Cui, J. et al. Elevated CO2 levels promote both carbon and nitrogen cycling in global forests. Nat. Clim. Change 14, 511–517 (2024).
Oono, R., Ho, R. & Jimenez Salinas, A. The direct and interactive effects of elevated CO2 and additional nitrate on relative costs and benefits of legume-rhizobia symbiosis. Symbiosis 84, 209–220 (2021).
Li, Y. et al. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Front. Plant Sci. 8, 1546 (2017).
Yu, Y. et al. Divergent responses of the diazotrophic microbiome to elevated CO2 in two rice cultivars. Front. Microbiol. 9, 1139 (2018).
Chen, H. & Markham, J. Ancient CO2 levels favor nitrogen fixing plants over a broader range of soil N compared to present. Sci. Rep. 11, 3038 (2021).
Cernusak, L. A. et al. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol. 157, 372–385 (2011).
Coskun, D., Britto, D. T. & Kronzucker, H. J. Nutrient constraints on terrestrial carbon fixation: the role of nitrogen. J. Plant Physiol. 203, 95–109 (2016).
Hungate, B. A. et al. CO2 elicits long-term decline in nitrogen fixation. Science 304, 1291 (2004).
Arndal, M. F., Tolver, A., Larsen, K. S., Beier, C. & Schmidt, I. K. Fine root growth and vertical distribution in response to elevated CO2, warming and drought in a mixed heathland–grassland. Ecosystems 21, 15–30 (2018).
van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).
Hodge, A., Helgason, T. & Fitter, A. H. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 3, 267–273 (2010).
Beidler, K. V. et al. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. N. Phytol. 205, 1153–1163 (2015).
Ziegler, C. et al. Quantification and uncertainty of root growth stimulation by elevated CO2 in a mature temperate deciduous forest. Sci. Total Environ. 854, 158661 (2023).
Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).
Li, F. et al. Trade‐off in the partitioning of recent photosynthate carbon under global change. Glob. Change Biol. 30, e17110 (2024).
Dong, Y., Wang, Z., Sun, H., Yang, W. & Xu, H. The response patterns of arbuscular mycorrhizal and ectomycorrhizal symbionts under elevated CO2: a meta-analysis. Front. Microbiol. 9, 1248 (2018).
Alberton, O., Kuyper, T. W. & Gorissen, A. Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. N. Phytol. 167, 859–868 (2005).
Treseder, K. K. A. meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. N. Phytol. 164, 347–355 (2004).
Bastida, F. et al. Global ecological predictors of the soil priming effect. Nat. Commun. 10, 3481 (2019).
Huo, C., Luo, Y. & Cheng, W. Rhizosphere priming effect: a meta-analysis. Soil Biol. Biochem. 111, 78–84 (2017).
Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).
Paterson, E., Sim, A., Davidson, J. & Daniell, T. J. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant Soil 408, 243–254 (2016).
Stuart, E. K. & Plett, K. L. Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses. Front. Plant Sci. 10, 1658 (2020).
Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).
Cheng, L. et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337, 1084–1087 (2012).
Ma, W. et al. Root exudates contribute to belowground ecosystem hotspots: a review. Front. Microbiol. 13, 937940 (2022).
Dong, J. et al. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: a review. Sci. Total Environ. 754, 142434 (2021).
Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: a meta-analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).
Andresen, L. C. et al. Nitrogen dynamics after two years of elevated CO2in phosphorus limited Eucalyptus woodland. Biogeochemistry 150, 297–312 (2020).
Talbot, J. M., Allison, S. D. & Treseder, K. K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 22, 955–963 (2008).
Pritchard, S. G. et al. Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air enrichment and soil N fertilization for 6 years. Glob. Change Biol. 20, 1313–1326 (2014).
Bunn, R. A. et al. What determines transfer of carbon from plants to mycorrhizal fungi? N. Phytol. 244, 1199–1215 (2024).
Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Colin, I. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 6294 (2016).
Vitousek, P. Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553–572 (1982).
Seibert, R. et al. Plant functional types differ in their long-term nutrient response to eCO2 in an extensive grassland. Ecosystems 25, 1084–1095 (2022).
Jiang, M. et al. Low phosphorus supply constrains plant responses to elevated CO2: a meta‐analysis. Glob. Change Biol. 26, 5856–5873 (2020).
Sardans, J. et al. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Change Biol. 23, 3849–3856 (2017).
Du, C., Wang, X., Zhang, M., Jing, J. & Gao, Y. Effects of elevated CO2 on plant C-N-P stoichiometry in terrestrial ecosystems: a meta-analysis. Sci. Total Environ. 650, 697–708 (2019).
Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).
Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Biol. 3, 125 (2020).
Dong, N. et al. Leaf nitrogen from the perspective of optimal plant function. J. Ecol. 110, 2585–2602 (2022).
Weil, R. & Brady, N. The Nature and Properties of Soils 15th edn (Pearson, 2017).
Deng, Q. et al. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology 96, 3354–3362 (2015).
Margalef, O. et al. The effect of global change on soil phosphatase activity. Glob. Change Biol. 27, 5989–6003 (2021).
Hasegawa, S., Macdonald, C. A. & Power, S. A. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob. Change Biol. 22, 1628–1643 (2016).
Jiang, M. et al. Microbial competition for phosphorus limits the CO2 response of a mature forest. Nature 630, 660–665 (2024).
Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).
Wang, B. et al. Air warming and CO2 enrichment cause more ammonia volatilization from rice paddies: an OTC field study. Sci. Total Environ. 752, 142071 (2021).
Liu, C., Bol, R., Ju, X., Tian, J. & Wu, D. Trade-offs on carbon and nitrogen availability lead to only a minor effect of elevated CO2 on potential denitrification in soil. Soil Biol. Biochem. 176, 108888 (2023).
Gineyts, R. & Niboyet, A. Nitrification, denitrification, and related functional genes under elevated CO2: a meta‐analysis in terrestrial ecosystems. Glob. Change Biol. 29, 1839–1853 (2023).
Xu-Ri, Prentice, I. C., Spahni, R. & Niu, H. S. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. N. Phytol. 196, 472–488 (2012).
Wright, I. J. & Westoby, M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct. Ecol. 17, 10–19 (2003).
Killingbeck, K. T. in Plant Cell Death Processes (ed. Noodén, L. D.) 215–226 (Academic, 2004).
Sun, X. et al. Widespread controls of leaf nutrient resorption by nutrient limitation and stoichiometry. Funct. Ecol. 37, 1653–1662 (2023).
Li, L., Wang, X. & Manning, W. J. Effects of elevated CO2 on leaf senescence, leaf nitrogen resorption, and late-season photosynthesis in Tilia americana L. Front. Plant Sci. 10, 1217 (2019).
Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant Sci. 10, 664 (2019).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Canadell, J. G. & Monteiro, P. M. S. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 5 (IPCC, Cambridge Univ. Press, 2023).
Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).
Meyerholt, J. & Zaehle, S. Controls of terrestrial ecosystem nitrogen loss on simulated productivity responses to elevated CO2. Biogeosciences 15, 5677–5698 (2018).
Wei, N. et al. Nutrient limitations lead to a reduced magnitude of disequilibrium in the global terrestrial carbon cycle. J. Geophys. Res. Biogeosci. 127, e2021JG006764 (2022).
Gier, B. K. et al. Representation of the terrestrial carbon cycle in CMIP6. Biogeosciences 21, 5321–5360 (2024).
Cleveland, C. C. et al. Global patterns of terrestrial biological nitrogen (N 2) fixation in natural ecosystems. Glob. Biogeochem. Cycles 13, 623–645 (1999).
Thomas, R. Q., Brookshire, E. N. J. & Gerber, S. Nitrogen limitation on land: how can it occur in Earth system models? Glob. Change Biol. 21, 1777–1793 (2015).
Brzostek, E. R., Fisher, J. B. & Phillips, R. P. Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. J. Geophys. Res. Biogeosci. 119, 1684–1697 (2014).
Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).
Ziehn, T. et al. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).
Fisher, J. B. et al. Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Glob. Biogeochem. Cycles 24, GB1014 (2010).
Yu, T. & Zhuang, Q. Modeling biological nitrogen fixation in global natural terrestrial ecosystems. Biogeosciences 17, 3643–3657 (2020).
Kou-Giesbrecht, S. et al. A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF). Biogeosciences 18, 4143–4183 (2021).
Vitousek, P. M., Treseder, K. K., Howarth, R. W. & Menge, D. N. L. A “toy model” analysis of causes of nitrogen limitation in terrestrial ecosystems. Biogeochemistry 160, 381–394 (2022).
Peng, J. et al. Global carbon sequestration is highly sensitive to model-based formulations of nitrogen fixation. Glob. Biogeochem. Cycles 34, e2019GB006296 (2020).
Davies-Barnard, T., Zaehle, S. & Friedlingstein, P. Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 Eearth system models. Biogeosciences 19, 3491–3503 (2022).
Drewniak, B. A. Simulating dynamic roots in the Energy Exascale Earth System Land Model. J. Adv. Model. Earth Syst. 11, 338–359 (2019).
Bouda, M. & Saiers, J. E. Dynamic effects of root system architecture improve root water uptake in 1-D process-based soil-root hydrodynamics. Adv. Water Resour. 110, 319–334 (2017).
Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. N. Phytol. 232, 1123–1158 (2021).
Warren, J. M. et al. Root structural and functional dynamics in terrestrial biosphere models: evaluation and recommendations. N. Phytol. 205, 59–78 (2015).
Gutjahr, O. et al. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).
Guenet, B. et al. Impact of priming on global soil carbon stocks. Glob. Change Biol. 24, 1873–1883 (2018).
Dong, N., Dechant, B., Wang, H., Wright, I. J. & Prentice, I. C. Global leaf-trait mapping based on optimality theory. Glob. Ecol. Biogeogr. 32, 1152–1162 (2023).
Xu, H., Wang, H., Prentice, I. C. & Harrison, S. P. Leaf carbon and nitrogen stoichiometric variation along environmental gradients. Biogeosciences 20, 4511–4525 (2023).
Knox, R. G. et al. Nutrient dynamics in a coupled terrestrial biosphere and land model (ELM-FATES-CNP). J. Adv. Model. Earth Syst. 16, e2023MS003689 (2024).
Sheng, M. et al. Long-term leaf C:N ratio change under elevated CO2 and nitrogen deposition in China: evidence from observations and process-based modeling. Sci. Total Environ. 800, 149591 (2021).
Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).
Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S. & Medlyn, B. E. Towards a more physiological representation of vegetation phosphorus processes in land surface models. N. Phytol. 222, 1223–1229 (2019).
Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).
Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).
Wang, Z. & Wang, C. Magnitude and mechanisms of nitrogen‐mediated responses of tree biomass production to elevated CO2: a global synthesis. J. Ecol. 109, 4038–4055 (2021).
Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).
Piñeiro, J. et al. Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: a global assessment. Sci. Rep. 7, 15355 (2017).
Maier, C. A. et al. The response of coarse root biomass to long-term CO2 enrichment and nitrogen application in a maturing Pinus taeda stand with a large broadleaved component. Glob. Change Biol. 28, 1458–1476 (2022).
Iversen, C. M., Keller, J. K., Garten, C. T. & Norby, R. J. Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2‐enrichment. Glob. Change Biol. 18, 1684–1697 (2012).
Talhelm, A. F., Pregitzer, K. S. & Zak, D. R. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecol. Lett. 12, 1219–1228 (2009).
Hungate, B. A. et al. Nitrogen inputs and losses in response to chronic CO2 exposure in a subtropical oak woodland. Biogeosciences 11, 3323–3337 (2014).
Peng, Y. et al. Global terrestrial nitrogen uptake and nitrogen use efficiency. J. Ecol. 111, 2676–2693 (2023).
Zaehle, S. Terrestrial nitrogen–carbon cycle interactions at the global scale. Phil. Trans. R. Soc. B 368, 20130125 (2013).
Nadelhoffer, K. J. et al. Nitrogen deposition and carbon sequestration. Nature 400, 630 (1999).
Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).
Thomas, R., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010).
de Vries, W., Du, E. & Butterbach-Bahl, K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr. Opin. Environ. Sustain. 9–10, 90–104 (2014).
Wang, R. et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Change Biol. 23, 4854–4872 (2017).
Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).
Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).
Bauters, M. et al. Century-long apparent decrease in intrinsic water-use efficiency with no evidence of progressive nutrient limitation in African tropical forests. Glob. Change Biol. 26, 4449–4461 (2020).
Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).
Kanakidou, M. et al. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. https://doi.org/10.1175/JAS-D-15-0278.1 (2016).
Jones, C. D. et al. C4MIP – the Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).
Norby, R. J. et al. Enhanced woody biomass production in a mature temperate forest under elevated CO2. Nat. Clim. Change 14, 983–988 (2024).
Rammig, A. & Lapola, D. AmazonFACE – a large-scale free air CO2 enrichment experiment in the Amazon rainforest. EGU General Assembly 2024 https://doi.org/10.5194/egusphere-egu24-5418 (2024).
Korner, C. A matter of tree longevity. Science 355, 130–131 (2017).
Bogue, R. R. et al. Plant responses to volcanically elevated CO2 in two Costa Rican forests. Biogeosciences 16, 1343–1360 (2019).
Cawse-Nicholson, K. et al. Ecosystem responses to elevated CO2 using airborne remote sensing at Mammoth Mountain, California. Biogeosciences 15, 7403–7418 (2018).
Chari, N. R. et al. Estimating the global root exudate carbon flux. Biogeochemistry 167, 895–908 (2024).
Hawkins, H.-J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023).
Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, e2022MS003204 (2022).
Jayawardena, D. M., Heckathorn, S. A. & Boldt, J. K. A meta-analysis of the combined effects of elevated carbon dioxide and chronic warming on plant %N, protein content and N-uptake rate. AoB Plants 13, plab031 (2021).
Osanai, Y., Janes, J. K., Newton, P. C. D. & Hovenden, M. J. Warming and elevated CO2 combine to increase microbial mineralisation of soil organic matter. Soil Biol. Biochem. 85, 110–118 (2015).
Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 221, 32–49 (2019).
Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).
Law, R. M. et al. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – part 1: model description and pre-industrial simulation. Geosci. Model Dev. 10, 2567–2590 (2017).
Lawrence, D. M. et al. The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).
Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).
Ito, A. & Inatomi, M. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 9, 759–773 (2012).
Reick, C. H. et al. JSBACH 3—The land component of the MPI Earth System Model: documentation of version 3.2. Ber. Erd. https://doi.org/10.17617/2.3279802 (2021).
Mathison, C. et al. Description and evaluation of the JULES-ES set-up for ISIMIP2b. Geosci. Model Dev. 16, 4249–4264 (2023).
Wiltshire, A. J. et al. JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geosci. Model Dev. 14, 2161–2186 (2021).
Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).
Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).
Oleson, K. W. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2013).
Acknowledgements
This Review is based on work supported by the National Science Foundation under grant number DEB-2339051. T.W.C. acknowledges funding from the MIT Presidential Fellowship Program. J.B.F. acknowledges support from the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science programme under award numbers DE-SC0008317 and DE-SC0016188, and a National Science Foundation Research Coordination Grant (INCyTE; grant number DEB-1754126) to investigate nutrient cycling in terrestrial ecosystems. B.D.S. was funded by the Swiss National Science Foundation under grant number PCEFP2_181115. T.K. acknowledges support from the RUBISCO SFA, which is sponsored by the Regional and Global Model Analysis (RGMA) Program in the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) in the US Department of Energy, Office of Science, and additional support from a DOE Early Career Research Program award (number DE-SC0021023) and NASA award numbers 80NSSC21K1705 and 80NSSC24K0600. This work is a contribution to the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, supported by Schmidt Sciences LLC (I.C.P., B.D.S. and T.K.).
Author information
Authors and Affiliations
Contributions
T.W.C., C.T., B.D.S., T.K. and I.C.P. designed the analysis. T.W.C. performed the analysis and wrote the paper. All authors contributed ideas to the analysis, interpretation of results and/ or manuscript revisions.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Climate Change thanks Andrew Wiltshire, Jianyang Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cambron, T.W., Fisher, J.B., Hungate, B.A. et al. Plant nutrient acquisition under elevated CO2 and implications for the land carbon sink. Nat. Clim. Chang. 15, 935–946 (2025). https://doi.org/10.1038/s41558-025-02386-y
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41558-025-02386-y


