Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Industry needs for practical lithium-metal battery designs in electric vehicles

Abstract

Lithium-metal battery (LMB) research and development has been ongoing for six decades across academia, industry and national laboratories. Despite this extensive effort, commercial LMBs have yet to displace, or offer a ready alternative to, lithium-ion batteries in electric vehicles (EVs). Here we explore some of the most critical industry needs that will have to be resolved to advance practical LMB designs for implementation in EVs. We begin our exploration with a brief overview of LMBs, then consider the following needs: energy density, anode thickness and cathode loading, electrolyte formulation and gas generation, electrolyte injection amount, cathode oxygen release, cell pressure control, cell format, cell manufacturing quality checks and battery modelling. We conclude with generic cell design recommendations for future LMB EV applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plot of energy density against different cell designs.
Fig. 2: Plot of capacity retention for different cell designs.
Fig. 3: Three types of battery testing fixture designs.
Fig. 4: Schematic for LMB manufacturing.

Similar content being viewed by others

References

  1. Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article  Google Scholar 

  2. Wang, Q. et al. Confronting the challenges in lithium anodes for lithium metal batteries. Adv. Sci. 8, 2101111 (2021).

    Article  Google Scholar 

  3. Chen, S., Dai, F. & Cai, M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS Energy Lett. 5, 3140–3151 (2020).

    Article  Google Scholar 

  4. Bauman, H. F. Lithium Anode Limited Cycle Battery Investigation Progress Report No. 2 (Lockheed Missiles & Space Company, Palo Alto Calif. Materials Sciences Lab, 1963).

  5. Bauman, H. F., Chilton, J. & Hultquist, A. Lithium Anode Limited Cycle Battery Investigation Progress Report No. 6 (Lockheed Palo Alto Research Lab, Palo Alto Calif. Materials Sciences Lab, 1966)

  6. Gao, Y., Pan, Z., Sun, J., Liu, Z. & Wang, J. High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022).

    Article  Google Scholar 

  7. Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article  Google Scholar 

  8. Aiken, C. P. et al. Li[Ni0.5Mn0.3Co0.2]O2 as a superior alternative to LiFePO4 for long-lived low voltage Li-ion cells. J. Electrochem. Soc. 169, 050512 (2022).

    Article  Google Scholar 

  9. Li, Q., Yang, Y., Yu, X. & Li, H. A 700 Whkg−1 rechargeable pouch type lithium battery. Chin. Phys. Lett. 40, 048201 (2023).

    Article  Google Scholar 

  10. Kim, S. et al. Lithium‐metal batteries: from fundamental research to industrialization. Adv. Mater. 35, 2206625 (2023).

    Article  Google Scholar 

  11. Etxandi-Santolaya, M., Casals, L. C. & Corchero, C. Estimation of electric vehicle battery capacity requirements based on synthetic cycles. Transp. Res. D 114, 103545 (2023).

    Article  Google Scholar 

  12. Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J. & Marquez-Barja, J. M. A review on electric vehicles: technologies and challenges. Smart Cities 4, 372–404 (2021).

    Article  Google Scholar 

  13. Electric Vehicle (EV) Market Size, Share & Industry Analysis, By Vehicle Type (Passenger Car and Commercial Vehicle), By Propulsion Type (Battery Electric Vehicle (BEV) and Hybrid Electric Vehicle (HEV)), By Drive Type (All Wheel Drive, Front Wheel Drive, and Rear Wheel Drive), By Range (Up to 150 Miles, 151–300 Miles, and Above 300 Miles), By Component (Battery Pack & High Voltage Component, Motor, Brake, Wheel & Suspension, Body & Chassis, and Low Voltage Electric Component) and Regional Forecast, 2024–2032 Industry Report FBI101678 https://www.fortunebusinessinsights.com/industry-reports/electric-vehicle-market-101678 (Fortune Business Insights, 2024).

  14. He, M. et al. Revealing the mechanism behind sudden capacity loss in lithium metal batteries. J. Electrochem. Soc. 170, 100528 (2023).

    Article  Google Scholar 

  15. Su, L. & Manthiram, A. Lithium‐metal batteries via suppressing Li dendrite growth and improving Coulombic efficiency. Small Struct. 3, 2200114 (2022).

    Article  Google Scholar 

  16. Jagger, B. & Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023).

    Article  Google Scholar 

  17. Gunnarsdóttir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of ‘dead lithium’ formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).

    Article  Google Scholar 

  18. Ue, M. & Uosaki, K. Recent progress in liquid electrolytes for lithium metal batteries. Curr. Opin. Electrochem. 17, 106–113 (2019).

    Article  Google Scholar 

  19. Ye, H., Zhang, Y., Yin, Y.-X., Cao, F.-F. & Guo, Y.-G. An outlook on low-volume-change lithium metal anodes for long-life batteries. ACS Cent. Sci. 6, 661–671 (2020).

    Article  Google Scholar 

  20. Weber, F. M., Kohlhaas, I. & Figgemeier, E. Tuning the reactivity of electrolyte solvents on lithium metal by vinylene carbonate. J. Electrochem. Soc. 167, 140523 (2020).

    Article  Google Scholar 

  21. Sheng, L. et al. Suppressing electrolyte–lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13, 172 (2022).

    Article  Google Scholar 

  22. Zhang, E. et al. Effects of cell-to-cell variations on series-connected liquid metal battery pack capacity. J. Energy Storage 73, 109148 (2023).

    Article  Google Scholar 

  23. Tan, S. J., Wang, W. P., Tian, Y. F., Xin, S. & Guo, Y. G. Advanced electrolytes enabling safe and stable rechargeable Li‐metal batteries: progress and prospects. Adv. Funct. Mater. 31, 2105253 (2021).

    Article  Google Scholar 

  24. Lee, J. et al. Toward thin and stable anodes for practical lithium metal batteries: a review, strategies, and perspectives. EcoMat 5, e12416 (2023).

    Article  Google Scholar 

  25. He, M., Su, C.-C., Xu, F., Amine, K. & Cai, M. Complementary electrolyte design for Li metal batteries in electric vehicle applications. ACS Appl. Mater. Interfaces 13, 25879–25889 (2021).

    Article  Google Scholar 

  26. Kim, Y. et al. Investigation of mass loading of cathode materials for high energy lithium-ion batteries. Electrochem. Commun. 147, 107437 (2023).

    Article  Google Scholar 

  27. Boyce, A. M. et al. Design of scalable, next-generation thick electrodes: opportunities and challenges. ACS Nano 15, 18624–18632 (2021).

    Article  Google Scholar 

  28. Yamaki, J.-I. et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219–227 (1998).

    Article  Google Scholar 

  29. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  Google Scholar 

  30. Cao, X. et al. Stability of solid electrolyte interphases and calendar life of lithium metal batteries. Energy Environ. Sci. 16, 1548–1559 (2023).

    Article  Google Scholar 

  31. Li, F. et al. A nanorod-like Ni-rich layered cathode with enhanced Li+ diffusion pathways for high-performance lithium-ion batteries. J. Mater. Chem. A 9, 2830–2839 (2021).

    Article  Google Scholar 

  32. Sharifi‐Asl, S., Lu, J., Amine, K. & Shahbazian‐Yassar, R. Oxygen release degradation in Li‐ion battery cathode materials: mechanisms and mitigating approaches. Adv. Energy Mater. 9, 1900551 (2019).

    Article  Google Scholar 

  33. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361 (2017).

    Article  Google Scholar 

  34. Lin, X.-D. et al. An oxygen-blocking oriented multifunctional solid–electrolyte interphase as a protective layer for a lithium metal anode in lithium–oxygen batteries. Energy Environ. Sci. 14, 1439–1448 (2021).

    Article  Google Scholar 

  35. Zhao, H., Wang, J., Shao, H., Xu, K. & Deng, Y. Gas generation mechanism in Li‐metal batteries. Energy Environ. Mater. 5, 327–336 (2022).

    Article  Google Scholar 

  36. Hou, X.-Y. et al. Thermodynamic analysis enables quantitative evaluation of lattice oxygen stability in Li-ion battery cathodes. ACS Energy Lett. 7, 1687–1693 (2022).

    Article  Google Scholar 

  37. Wandt, J., Freiberg, A. T., Ogrodnik, A. & Gasteiger, H. A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21, 825–833 (2018).

    Article  Google Scholar 

  38. Harrison, K. L. et al. Effects of applied interfacial pressure on Li-metal cycling performance and morphology in 4 M LiFSI in DME. ACS Appl. Mater. Interfaces 13, 31668–31679 (2021).

    Article  Google Scholar 

  39. Dai, F. & Cai, M. Best practices in lithium battery cell preparation and evaluation. Commun. Mater. 3, 64 (2022).

    Article  Google Scholar 

  40. Lu, B. et al. Editors’ choice—Methods—Pressure control apparatus for lithium metal batteries. J. Electrochem. Soc. 169, 070537 (2022).

    Article  Google Scholar 

  41. Yin, X. et al. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50, 659–664 (2018).

    Article  Google Scholar 

  42. Waldmann, T. et al. A direct comparison of pilot-scale Li-ion cells in the formats PHEV1, pouch, and 21700. J. Electrochem. Soc. 168, 090519 (2021).

    Article  Google Scholar 

  43. Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article  Google Scholar 

  44. Moon, C., Lian, J. & Lee, M.-G. Identification of elastic and plastic properties of aluminum–polymer laminated pouch film for lithium-ion batteries: a hybrid experimental–numerical scheme. J. Energy Storage 72, 108601 (2023).

    Article  Google Scholar 

  45. Finegan, D. P. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 6, 6924 (2015).

    Article  Google Scholar 

  46. Kwade, A. et al. Current status and challenges for automotive battery production technologies. Nat. Energy 3, 290–300 (2018).

    Article  Google Scholar 

  47. Reynolds, C. D., Slater, P. R., Hare, S. D., Simmons, M. J. & Kendrick, E. A review of metrology in lithium-ion electrode coating processes. Mater. Des. 209, 109971 (2021).

    Article  Google Scholar 

  48. Lv, S. et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat. Commun. 9, 2152 (2018).

    Article  Google Scholar 

  49. Aykol, M. et al. Perspective—Combining physics and machine learning to predict battery lifetime. J. Electrochem. Soc. 168, 030525 (2021).

    Article  Google Scholar 

  50. Wu, Z. et al. The application of physics-informed machine learning in multiphysics modeling in chemical engineering. Ind. Eng. Chem. Res. 62, 18178–18204 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Cai.

Ethics declarations

Competing interests

All the authors are employees of General Motors.

Peer review

Peer review information

Nature Energy thanks Tobias Glossmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Hector, L.G., Dai, F. et al. Industry needs for practical lithium-metal battery designs in electric vehicles. Nat Energy 9, 1199–1205 (2024). https://doi.org/10.1038/s41560-024-01624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-024-01624-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing