Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Formation pathway of high-efficiency kesterite solar cells fabricated through molecular ink chemistry

Abstract

Solar cells based on kesterite materials, Cu2ZnSn(S,Se)4 (CZTSSe), offer a non-toxic, Earth-abundant solution for energy generation. However, they have historically struggled to achieve power conversion efficiencies comparable to those of other thin-film photovoltaic technologies. Here we highlight the critical role of the synthesis and formation pathway of these multinary semiconductors, discussing the challenges associated with kesterite layer fabrication and their impact on device performance. In particular, we discuss how the design of molecular inks in kesterite synthesis is key to overcoming these limitations, unveiling the connections between precursor chemistry, synthesis pathways and the formation of point and extended defects. We discuss how precise control over these factors has enabled kesterite solar cells to exceed 15% efficiency. Building on these advances, we propose strategies to further improve device performance. Finally, the insights presented here provide a framework for the exploration and development of other multinary semiconductor materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State of the art of kesterite solar cells.
Fig. 2: Solution-controlled oxidation state, from molecular precursors to precursor film.
Fig. 3: Role of precursor film in phase evolution to crystalline absorber.
Fig. 4: Phase evolution of amorphous film to high-quality absorber.
Fig. 5: Technological milestones in kesterite solar cell development via molecular inks.

Similar content being viewed by others

References

  1. Chen, J. et al. Navigating phase diagram complexity to guide robotic inorganic materials synthesis. Nat. Synth. 3, 606–614 (2024).

    Article  Google Scholar 

  2. Bennett, J. A. & Abolhasani, M. Robotic synthesis decoded through phase diagram mastery. Nat. Synth. 3, 565–567 (2024).

    Article  Google Scholar 

  3. Katagiri, H. et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 407–414 (1997).

    Article  Google Scholar 

  4. Giraldo, S. et al. Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv. Mater. 31, 1806692 (2019).

    Article  Google Scholar 

  5. Keller, J. et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9, 467–478 (2024).

    Article  Google Scholar 

  6. He, M. et al. Kesterite solar cells: insights into current strategies and challenges. Adv. Sci. 8, 2004313 (2021).

    Article  Google Scholar 

  7. Wang, L. et al. Defects in kesterite materials towards high-efficiency solar cells: origin, impact, characterization, and engineering. J. Mater. Chem. A 12, 25643–25677 (2024).

    Article  Google Scholar 

  8. Schorr, S. et al. Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites. J. Phys. Energy 2, 012002 (2020).

    Article  Google Scholar 

  9. Grenet, L., Suzon, M. A. A., Emieux, F. & Roux, F. Analysis of failure modes in kesterite solar cells. ACS Appl. Energy Mater. 1, 2103–2113 (2018).

    Article  Google Scholar 

  10. Li, J. et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment. Adv. Mater. 32, 2005268 (2020). Demonstrates 12.5% CZTSe by engineering the local chemical environment controlling the reaction pathway, directly linking processing chemistry to defect control and device efficiency.

    Article  Google Scholar 

  11. Ye, K. et al. Tuning electrical, optical, and thermal properties through cation disorder in Cu2ZnSnS4. Chem. Mater. 31, 8402–8412 (2019).

    Article  Google Scholar 

  12. Fonoll-Rubio, R. et al. Insights into interface and bulk defects in a high efficiency kesterite-based device. Energy Environ. Sci. 14, 507–523 (2021).

    Article  Google Scholar 

  13. Kim, S. Y. et al. Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors. Nano Energy 59, 399–411 (2019).

    Article  Google Scholar 

  14. Wang, W., et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014). Reports the long-standing 12.6% pure solution hydrazine-processed CZTSSe benchmark.

    Article  Google Scholar 

  15. Yang, K. J. et al. A band-gap-graded CZTSSe solar cell with 12.3% efficiency. J. Mater. Chem. A 4, 10151–10158 (2016).

    Article  Google Scholar 

  16. Kim, S., Kim, K. M., Tampo, H., Shibata, H. & Niki, S. Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency. Appl. Phys. Express 9, 102301 (2016).

    Article  Google Scholar 

  17. Son, D. H. et al. Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device. J. Mater. Chem. A 7, 25279–25289 (2019).

    Article  Google Scholar 

  18. Green, M. A. et al. Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 32, 425–441 (2024).

    Article  Google Scholar 

  19. Qi, Y. et al. Enhancing grain growth for efficient solution-processed (Cu,Ag)2ZnSn(S,Se)4 solar cells based on acetate precursor. ACS Appl. Mater. Interfaces 12, 14213–14223 (2020).

    Article  Google Scholar 

  20. Ki, W. & Hillhouse, H. W. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent. Adv. Energy Mater. 1, 732–735 (2011). Introduces the DMSO–thiourea molecular ink route for kesterite materials, establishing Lewis acid–base complexation as a scalable, non-toxic pathway for solution-processed kesterite.

    Article  Google Scholar 

  21. Xin, H., Katahara, J. K., Braly, I. L. & Hillhouse, H. W. 8% efficient Cu2ZnSn(S,Se)4 solar cells from redox equilibrated simple precursors in DMSO. Adv. Energy Mater. 4, 1301823 (2014). Shows that redox-equilibrated DMSO precursors and controlled mixing order govern Cu/Sn oxidation states, material quality and device performance.

    Article  Google Scholar 

  22. Guo, Q. et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 132, 17384–17386 (2010).

    Article  Google Scholar 

  23. Miskin, C. K. et al. 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks. Prog. Photovolt. Res. Appl. 23, 654–659 (2015).

    Article  Google Scholar 

  24. Gong, Y. et al. Ag incorporation with controlled grain growth enables 12.5% efficient kesterite solar cell with open circuit voltage reached 64.2% Shockley–Queisser limit. Adv. Funct. Mater. 31, 2101927 (2021). Introduces Ag alloying with ink-controlled grain growth and device performance, evidencing alloy-assisted pathway engineering.

    Article  Google Scholar 

  25. Gong, Y. et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells. Nat. Energy 7, 966–977 (2022). Highlights the role of a soft thermal treatment on solution-processed CZTSSe/CdS interface to enable a champion device with 13% efficiency.

    Article  Google Scholar 

  26. Zhou, J. et al. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat. Energy 8, 526–535 (2023). Shows that controlled selenization conditions further suppress intermediate phases and drive uniform crystallization, delivering a certified 13.8% CZTSSe.

    Article  Google Scholar 

  27. Shi, J. et al. Multinary alloying for facilitated cation exchange and suppressed defect formation in kesterite solar cells with above 14% certified efficiency. Nat. Energy 9, 1095–1104 (2024). Shows that multinary alloying further suppresses intermediate phases and drives uniform crystallization, delivering a certified 14.2% CZTSSe.

    Google Scholar 

  28. Yin, K. et al. A high-efficiency (12.5%) kesterite solar cell realized by crystallization growth kinetics control over aqueous solution based Cu2ZnSn(S,Se)4. J. Mater. Chem. A 10, 779–788 (2022).

    Article  Google Scholar 

  29. Su, Z. et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution. Adv. Mater. 32, 2000121 (2020).

    Article  Google Scholar 

  30. Yan, C. et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764–772 (2018).

    Article  Google Scholar 

  31. Zhao, Y. et al. Controllable double gradient bandgap strategy enables high efficiency solution-processed kesterite solar cells. Adv. Funct. Mater. 34, 2311992 (2024).

    Article  Google Scholar 

  32. Zhou, J. et al. Regulating crystal growth via organic lithium salt additive for efficient kesterite solar cells. Nano Energy 89, 106405 (2021).

    Article  Google Scholar 

  33. Gong, Y. et al. Li-doping and Ag-alloying interplay shows the pathway for kesterite solar cells with efficiency over 14%. Adv. Funct. Mater. 34, 2404669 (2024).

    Article  Google Scholar 

  34. Wang, J. et al. Pd(II)/Pd(IV) redox shuttle to suppress vacancy defects at grain boundaries for efficient kesterite solar cells. Nat. Commun. 15, 4344 (2024).

    Article  Google Scholar 

  35. Li, Y. et al. Suppressing element inhomogeneity enables 14.9% efficiency CZTSSe solar cells. Adv. Mater. 34, 2400138 (2024).

    Article  Google Scholar 

  36. Otgontamir, N. et al. High efficiency kesterite solar cells through a dual treatment approach: improving the quality of both absorber bulk and heterojunction interface. Adv. Energy Mater. 13, 2302941 (2023).

    Article  Google Scholar 

  37. Xin, H. et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency. Phys. Chem. Chem. Phys. 17, 23859–23866 (2015).

    Article  Google Scholar 

  38. Giraldo, S. et al. How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy Environ. Sci. 11, 582–593 (2018). Identifies the role of Ge doping in formation pathway and device performance.

    Article  Google Scholar 

  39. Katagiri, H., Ishigaki, N., Ishida, T. & Saito, K. Characterization of Cu2ZnSnS4 thin films prepared by vapor phase sulfurization. Jpn J. Appl. Phys. 40, 500 (2001).

    Article  Google Scholar 

  40. Guo, Q., Hillhouse, H. W. & Agrawal, R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 131, 11672–11673 (2009).

    Article  Google Scholar 

  41. Hsu, W. et al. Growth mechanisms of co-evaporated kesterite: a comparison of Cu-rich and Zn-rich composition paths. Prog. Photovolt. Res. Appl. 22, 35–43 (2014).

    Article  Google Scholar 

  42. Lee, Y. S. et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5, 1401372 (2015).

    Article  Google Scholar 

  43. Kim, S. et al. Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10%. Sol. Energy Mater. Sol. Cells 144, 488–492 (2016).

    Article  Google Scholar 

  44. Fairbrother, A. et al. On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks. Sol. Energy Mater. Sol. Cells 112, 97–105 (2013).

    Article  Google Scholar 

  45. López-Marino, S. et al. Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J. Mater. Chem. A 1, 8338–8343 (2013).

    Article  Google Scholar 

  46. López-Marino, S. et al. ZnSe etching of Zn-rich Cu2ZnSnSe4: an oxidation route for improved solar-cell efficiency. Chem. A Eur. J. 19, 14814–14822 (2013).

    Article  Google Scholar 

  47. Brammertz, G. et al. Characterization of defects in 9.7% efficient Cu2ZnSnSe4–CdS–ZnO solar cells. Appl. Phys. Lett. 103, 163904 (2013).

    Article  Google Scholar 

  48. Scragg, J. J. et al. Effects of back contact instability on Cu2ZnSnS4 devices and processes. Chem. Mater. 25, 3162–3171 (2013).

    Article  Google Scholar 

  49. Yang, K. et al. Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu2ZnSnS4 solar cells. Prog. Photovolt. Res. Appl. 23, 1771–1784 (2015).

    Article  Google Scholar 

  50. Sun, K. et al. Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Adv. Energy Mater. 6, 1600046 (2016).

    Article  Google Scholar 

  51. Katagiri, H. et al. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Express 1, 041201 (2008).

    Article  Google Scholar 

  52. Lopez-Marino, S. et al. The importance of back contact modification in Cu2ZnSnSe4 solar cells: the role of a thin MoO2 layer. Nano Energy 26, 708–721 (2016).

    Article  Google Scholar 

  53. Larsen, J. K. et al. Surface modification through air annealing Cu2ZnSn(S,Se)4 absorbers. Thin Solid Films 633, 118–121 (2017).

    Article  Google Scholar 

  54. Taskesen, T. et al. Resilient and reproducible processing for CZTSe solar cells in the range of 10%. Prog. Photovolt. Res. Appl. 26, 1003–1006 (2018).

    Article  Google Scholar 

  55. Sun, R. et al. Beyond 11% efficient Cu2ZnSn(Se,S)4 thin film solar cells by cadmium alloying. Sol. Energy Mater. Sol. Cells 174, 494–498 (2018).

    Article  Google Scholar 

  56. Taskesen, T. et al. Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors. Adv. Energy Mater. 8, 1703295 (2018).

    Article  Google Scholar 

  57. He, M. et al. High efficiency Cu2ZnSn(S,Se)4 solar cells with shallow LiZn acceptor defects enabled by solution-based Li post-deposition treatment. Adv. Energy Mater. 11, 2003783 (2021).

    Article  Google Scholar 

  58. Gang, M. G. et al. A facile process for partial Ag substitution in kesterite Cu2ZnSn(S,Se)4 solar cells enabling a device efficiency of over 12%. ACS Appl. Mater. Interfaces 13, 3959–3968 (2021).

    Article  Google Scholar 

  59. Larramona, G. et al. Fine-tuning the Sn content in CZTSSe thin films to achieve 10.8% solar cell efficiency from spray-deposited water–ethanol-based colloidal inks. Adv. Energy Mater. 5, 1501404 (2015).

    Article  Google Scholar 

  60. Guo, Q. et al. Enhancing the performance of CZTSSe solar cells with Ge alloying. Sol. Energy Mater. Sol. Cells 105, 132–136 (2012).

    Article  Google Scholar 

  61. Todorov, T. K., Reuter, K. B. & Mitzi, D. B. High-efficiency solar cell with Earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010).

    Article  Google Scholar 

  62. Barkhouse, D. A. R., Gunawan, O., Gokmen, T., Todorov, T. K. & Mitzi, D. B. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt. Res. Appl. 20, 6–11 (2012).

    Article  Google Scholar 

  63. Todorov, T. K. et al. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Adv. Energy Mater. 3, 34–38 (2013).

    Article  Google Scholar 

  64. Winkler, M. T. et al. Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells. Energy Environ. Sci. 7, 1029–1036 (2014).

    Article  Google Scholar 

  65. Shin, B. et al. Thin film solar cell with 8.4% power conversion efficiency using an Earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 21, 72–76 (2013).

    Article  Google Scholar 

  66. Hiroi, H., Sakai, N., Kato, T. & Sugimoto, H. High voltage Cu2ZnSnS4 submodules by hybrid buffer layer. In Proc. 39th Photovoltaic Specialists Conference 0863–0866 (IEEE, 2013).

  67. Schnabel, T., Abzieher, T., Friedlmeier, T. M. & Ahlswede, E. Solution-based preparation of Cu2ZnSn(S,Se)4 for solar cells—comparison of SnSe2 and elemental Se as chalcogen source. IEEE J. Photovolt. 5, 670–675 (2015).

    Article  Google Scholar 

  68. Werner, M. et al. Enhanced carrier collection from CdS passivated grains in solution-processed Cu2ZnSn(S,Se)4 solar cells. ACS Appl. Mater. Interfaces 7, 12141–12146 (2015).

    Article  Google Scholar 

  69. Haass, S. G. et al. 11.2% efficient solution processed kesterite solar cell with a low voltage deficit. Adv. Energy Mater. 5, 1500712 (2015).

    Article  Google Scholar 

  70. Liu, F. et al. Kesterite Cu2ZnSn(S,Se)4 solar cells with beyond 8% efficiency by a sol–gel and selenization process. ACS Appl. Mater. Interfaces 7, 14376–14383 (2015).

    Article  Google Scholar 

  71. Collord, A. D. & Hillhouse, H. W. Germanium alloyed kesterite solar cells with low voltage deficits. Chem. Mater. 28, 2067–2073 (2016).

    Article  Google Scholar 

  72. Haass, S. G. et al. Complex interplay between absorber composition and alkali doping in high-efficiency kesterite solar cells. Adv. Energy Mater. 8, 1701760 (2018).

    Article  Google Scholar 

  73. Cabas-Vidani, A. et al. High-efficiency (LixCu1−x)2ZnSn(S,Se)4 kesterite solar cells with lithium alloying. Adv. Energy Mater. 8, 1801191 (2018).

    Article  Google Scholar 

  74. Qi, Y. et al. Synergistic effect of Mn on bandgap fluctuations and surface electrical characteristics in Ag-based Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. A 9, 2292–2300 (2021).

    Article  Google Scholar 

  75. Guo, J. et al. Enhancing the photovoltaic performance of Cu2ZnSn(S,Se)4 solar cells with Ba trace doping: large chemical mismatch cation incorporation. Sol. RRL 5, 2100607 (2021).

    Article  Google Scholar 

  76. Deng, Y. et al. Adjusting the SnZn defects in Cu2ZnSn(S,Se)4 absorber layer via Ge4+ implanting for efficient kesterite solar cells. J. Energy Chem. 61, 1–7 (2021).

    Article  Google Scholar 

  77. Chang, X. et al. Synergistic incorporation of NaF and CsF PDT for high efficiency kesterite solar cells: unveiling of grain interior and grain boundary effects. J. Mater. Chem. A 9, 413–422 (2021).

    Article  Google Scholar 

  78. Du, Y. et al. Defect engineering in Earth-abundant Cu2ZnSn(S,Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells. Adv. Funct. Mater. 31, 2010325 (2021).

    Article  Google Scholar 

  79. Cui, C. et al. Surface defect ordered Cu2ZnSn(S,Se)4 solar cells with efficiency over 12% via manipulating local substitution. J. Energy Chem. 67, 555–562 (2022).

    Article  Google Scholar 

  80. Zhao, Y. et al. Local Cu component engineering to achieve continuous carrier transport for enhanced kesterite solar cells. ACS Appl. Mater. Interfaces 13, 795–805 (2021).

    Article  Google Scholar 

  81. Duan, B. et al. Two-step annealing CZTSSe/CdS heterojunction to improve interface properties of kesterite solar cells. ACS Appl. Mater. Interfaces 13, 55243–55253 (2021).

    Article  Google Scholar 

  82. Sun, Y. et al. N-type surface design for p-type CZTSSe thin film to attain high efficiency. Adv. Mater. 33, 2104330 (2021).

    Article  Google Scholar 

  83. Xu, X. et al. Efficient and composition-tolerant kesterite Cu2ZnSn(S,Se)4 solar cells derived from an in situ formed multifunctional carbon framework. Adv. Energy Mater. 11, 2102298 (2021).

    Article  Google Scholar 

  84. Guo, J. et al. Microenvironment created by SnSe2 vapor and pre-selenization to stabilize the surface and back contact in kesterite solar cells. Small 18, 2203354 (2022).

    Article  Google Scholar 

  85. Liang, G. X. et al. Optimizing the ratio of Sn4+ and Sn2+ in Cu2ZnSn(S,Se)4 precursor solution via air environment for highly efficient solar cells. Sol. RRL 5, 2100574 (2021).

    Article  Google Scholar 

  86. Zhao, X. et al. Precursor solution chemistry via water additive enabling CZTSSe solar cells with over 12% efficiency. Sci. China Mater. 66, 895–902 (2023).

    Article  Google Scholar 

  87. Zhao, Y. et al. Over 12% efficient kesterite solar cell via back interface engineering. J. Energy Chem. 75, 321–329 (2022).

    Article  Google Scholar 

  88. Guo, Y. et al. Plasmonic local electric field-enhanced interface toward high-efficiency Cu2ZnSn(S,Se)4 thin-film solar cells. ACS Appl. Mater. Interfaces 14, 26690–26698 (2022).

    Article  Google Scholar 

  89. Fu, J. et al. Rational design of heterojunction interface for Cu2ZnSn(S,Se)4 solar cells to exceed 12% efficiency. Sol. RRL 6, 2101032 (2022).

    Article  Google Scholar 

  90. Liu, Y. et al. Li/Ag co-doping synergistically boosts the efficiency of kesterite solar cells through effective SnZn defect passivation. Adv. Mater. Interfaces 9, 2201677 (2022).

    Article  Google Scholar 

  91. Guo, H. et al. Band-gap-graded Cu2ZnSn(S,Se)4 drives highly efficient solar cells. Energy Environ. Sci. 15, 693–704 (2022).

    Article  Google Scholar 

  92. Wang, J. et al. Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells. Adv. Mater. 34, 2202858 (2022).

    Article  Google Scholar 

  93. Lou, L. et al. A feasible and effective solution-processed PCBM electron extraction layer enabling the high VOC and efficient Cu2ZnSn(S,Se)4 devices. J. Energy Chem. 70, 154–161 (2022).

    Article  Google Scholar 

  94. Lee, T. et al. Defect passivation for kesterite CZTSSe solar cells via in situ Al2O3 incorporation into the bulk CZTSSe absorber. Sol. RRL 6, 2100862 (2022).

    Article  Google Scholar 

  95. Ji, Y. et al. CuSCN modified back contacts for high performance CZTSSe solar cells. Adv. Funct. Mater. 33, 2211421 (2023).

    Article  Google Scholar 

  96. Farooq, U. et al. Defects passivation by solution-processed titanium doping strategy towards high efficiency kesterite solar cells. Chem. Eng. J. 451, 139109 (2023).

    Article  Google Scholar 

  97. Yin, K. et al. Lanthanum-induced synergetic carrier doping of heterojunction to achieve high-efficiency kesterite solar cells. J. Mater. Chem. A 11, 9646–9653 (2023).

    Article  Google Scholar 

  98. Jian, Y. et al. Grain growth mechanism of CZTSSe films controlled by the evaporation area of Se. Sol. RRL 7, 2300006 (2023).

    Article  Google Scholar 

  99. Chen, X. Y. et al. Ag, Ti dual-cation substitution in Cu2ZnSn(S,Se)4 induced growth promotion and defect suppression for high-efficiency solar cells. J. Mater. Chem. A 10, 22791–22802 (2022).

    Article  Google Scholar 

  100. Zhao, X. et al. Regulating charge carrier recombination in Cu2ZnSn(S,Se)4 solar cells via cesium treatment: bulk and interface effects. J. Mater. Chem. A 11, 11454–11462 (2023).

    Article  Google Scholar 

  101. Geng, H. et al. Two-step cooling strategy for synergistic control of CuZn and SnZn defects enabling 12.87% efficiency (Ag,Cu)2ZnSn(S,Se)4 solar cells. Adv. Funct. Mater. 33, 2210551 (2023).

    Article  Google Scholar 

  102. Yu, Z. et al. Unveiling the selenization reaction mechanisms in ambient air-processed highly efficient kesterite solar cells. Adv. Energy Mater. 13, 2300521 (2023).

    Article  Google Scholar 

  103. Qi, Y. et al. Passivating SnZn defect and optimizing energy level alignment via organic silicon salt incorporation toward efficient solution-processed CZTSSe solar cells. Adv. Funct. Mater. 34, 2308333 (2024).

    Article  Google Scholar 

  104. Ma, Q. et al. 2D Ti3C2-MXene serving as intermediate layer between absorber and back contact for efficient CZTSSe solar cells. ACS Appl. Mater. Interfaces 15, 55652–55658 (2023).

    Article  Google Scholar 

  105. Zhao, Y. et al. Suppressing surface and bulk effect enables high efficiency solution-processed kesterite solar cells. Chem. Eng. J. 479, 147739 (2024).

    Article  Google Scholar 

  106. Wei, H. et al. Regulating hetero-nucleation enabling over 14% efficient kesterite solar cells. Small 20, 2308266 (2023).

    Article  Google Scholar 

  107. Lou, L. et al. Crown ether-assisted colloidal ZnO window layer engineering for efficient kesterite (Ag,Cu)2ZnSn(S,Se)4 solar cells. ACS Energy Lett. 8, 3775–3783 (2023).

    Article  Google Scholar 

  108. Green, M. A. et al. Solar cell efficiency tables (Version 63). Prog. Photovolt. Res. Appl. 32, 3–13 (2024).

    Article  Google Scholar 

  109. Zhang, X. et al. Suppressed interface defects by GeSe2 post-deposition treatment enables high-efficiency kesterite solar cells. Adv. Funct. Mater. 33, 2211315 (2023).

    Article  Google Scholar 

  110. Fu, J. et al. Defect engineering enabling p-type Mo(S,Se)2:TM (TM = V, Nb, Ta) towards high-efficiency kesterite solar cells. Chem. Eng. J. 457, 141348 (2023).

    Article  Google Scholar 

  111. Jian, Y. et al. Modification of back interfacial contact with MoO3 layer in situ introduced by Na2S aqueous solution for efficient kesterite CZTSSe solar cells. J. Mater. Chem. C 11, 4634–4644 (2023).

    Article  Google Scholar 

  112. Xu, X. et al. 12.84% efficiency flexible kesterite solar cells by heterojunction interface regulation. Adv. Energy Mater. 13, 2301701 (2023).

    Article  Google Scholar 

  113. Cao, L. et al. Passivating grain boundaries via graphene additive for efficient kesterite solar cells. Small 20, 2304866 (2024).

    Article  Google Scholar 

  114. Xiao, Q. et al. Defect engineering of solution-processed ZnO:Li window layers towards high-efficiency and low-cost kesterite photovoltaics. J. Mater. Chem. A 11, 11161–11169 (2023).

    Article  Google Scholar 

  115. Wang, M. et al. Hyperactive selenium source yields kesterite solar cells with 12.86% efficiency. Adv. Funct. Mater. 33, 2307389 (2023).

    Article  Google Scholar 

  116. Wang, Z. et al. Toward high efficient Cu2ZnSn(Sx,Se1−x)4 solar cells: break the limitations of VOC and FF. Small 19, 2300634 (2023).

    Article  Google Scholar 

  117. Li, Y. et al. Suppressing deep-level trap toward over 13% efficient solution-processed kesterite solar cell. Small 20, 2401330 (2024).

    Article  Google Scholar 

  118. Jian, Y. et al. Segmented control of selenization environment for high-quality Cu2ZnSn(S,Se)4 films toward efficient kesterite solar cells. Small Methods 8, 2400041 (2024).

    Article  Google Scholar 

  119. Wang, L. et al. Synergistic crystallization modulation and defects passivation in kesterite via anion-coordinate precursor engineering for efficient solar cells. Adv. Sci. 11, 2405016 (2024).

    Article  Google Scholar 

  120. Cao, L. et al. Modifying surface termination by bidentate chelating strategy enables 13.77% efficient kesterite solar cells. Adv. Mater. 36, 2311918 (2024).

    Article  Google Scholar 

  121. Clark, J. A. et al. Complexation chemistry in N,N-dimethylformamide-based molecular inks for chalcogenide semiconductors and photovoltaic devices. J. Am. Chem. Soc. 141, 298–308 (2019). Maps solvent–ligand complexation and Cu redox/disproportionation in aprotic polar inks, providing mechanistic insights to stabilize oxidation states in kesterite molecular inks.

    Article  Google Scholar 

  122. Saidaminov, M. I. et al. Conventional solvent oxidizes Sn(II) in perovskite inks. ACS Energy Lett. 5, 1153–1155 (2020).

    Article  Google Scholar 

  123. Lundberg, D. & Persson, I. On solvated tin(iv) ions and the coordination chemistry of high-valent d10 metal ions. Dalt. Trans. 48, 9089–9093 (2019).

    Article  Google Scholar 

  124. Yang, M. et al. Self-stabilizing molecular solution for Cu2SnS3 thin film: an insight into the oxidation inhibitor of bivalent tin ion. J. Power Sources 494, 229699 (2021).

    Article  Google Scholar 

  125. Hages, C. J., Koeper, M. J., Miskin, C. K., Brew, K. W. & Agrawal, R. Controlled grain growth for high performance nanoparticle-based kesterite solar cells. Chem. Mater. 28, 7703–7714 (2016).

    Article  Google Scholar 

  126. Mainz, R. et al. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. Phys. Chem. Chem. Phys. 15, 18281 (2013).

    Article  Google Scholar 

  127. Chernomordik, B. D. et al. Microstructure evolution during selenization of Cu2ZnSnS4 colloidal nanocrystal coatings. Chem. Mater. 28, 1266–1276 (2016).

    Article  Google Scholar 

  128. Gong, Y. et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. Sci. China Mater. 64, 52–60 (2021). Shows that Sn4+-based DMSO molecular inks yield high-quality CZTSSe through oxidation state control.

    Article  Google Scholar 

  129. Gong, Y. et al. Identifying the origin of the VOC deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution. Energy Environ. Sci. 14, 2369–2380 (2021). Links molecular ink composition and Sn oxidation state to distinct grain-growth mechanisms and VOC loss.

    Article  Google Scholar 

  130. Trifiletti, V. et al. Study of precursor-inks designed for high-quality Cu2ZnSnS4 films for low-cost PV application. ChemistrySelect 4, 4905–4912 (2019).

    Article  Google Scholar 

  131. Willett, R. D. & Chang, K. The crystal structure of copper(II) chloride bis(dimethylsulphoxide). Inorg. Chim. Acta 4, 447–451 (1970).

    Article  Google Scholar 

  132. Watt, G. W. & Thompson, J. S. The interaction of liquid ammonia and urea and thiourea complexes of copper(I) and (II), silver(I), zinc(II), nickel(II) and palladium(II). J. Inorg. Nucl. Chem. 33, 1319–1323 (1971).

    Article  Google Scholar 

  133. Cassidy, J. E., Moser, W., Donaldson, J. D., Jelen, A. & Nicholson, D. G. Thiourea complexes of tin(II) compounds. J. Chem. Soc. A 1970, 173–175 (1970).

    Article  Google Scholar 

  134. Abdel-Shakour, M. et al. High-efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation. Sol. RRL 5, 2000606 (2021).

    Article  Google Scholar 

  135. Semenov, V. N. & Ovechkina, N. M. Formation of SnS, SnS2, and PbS films from thiourea coordination compounds. Russ. J. Appl. Chem. 84, 2033–2039 (2011).

    Article  Google Scholar 

  136. Kumari, R. G. et al. Raman spectral investigation of thiourea complexes. Spectrochim. Acta A 73, 263–267 (2009).

    Article  Google Scholar 

  137. Dunstan, P. O. Thermochemistry of adducts of tin(IV) chloride with amides and thioamides. Thermochim. Acta 345, 117–123 (2000).

    Article  Google Scholar 

  138. Su, Z. et al. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. J. Mater. Chem. A 2, 500–509 (2014).

    Article  Google Scholar 

  139. Liang, A. et al. An effective precursor-solutioned strategy for developing Cu2ZnSn(S, Se)4 thin film toward high efficiency solar cell. Adv. Energy Mater. 15, 2403950 (2025).

    Article  Google Scholar 

  140. Mangan, T. C., McCandless, B. E., Dobson, K. D. & Birkmire, R. W. Thermochemical and kinetic aspects of Cu2ZnSn(S,Se)4 thin film growth by reacting Cu–Zn–Sn precursors in H2S and H2Se. J. Appl. Phys. 118, 065303 (2015).

    Article  Google Scholar 

  141. Xu, X. et al. Controlling selenization equilibrium enables high-quality kesterite absorbers for efficient solar cells. Nat. Commun. 14, 6650 (2023).

    Article  Google Scholar 

  142. Martinho, F. et al. Persistent double-layer formation in kesterite solar cells: a critical review. ACS Appl. Mater. Interfaces 12, 39405–39424 (2020).

    Article  Google Scholar 

  143. Pan, X. et al. 12.3% efficient low VOC loss pure sulfide kesterite solar cells from DMSO solution via cadmium alloying. Adv. Energy Mater. 13, 2301780 (2023).

    Article  Google Scholar 

  144. Scragg, J. J., Ericson, T., Kubart, T., Edoff, M. & Platzer-Björkman, C. Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011).

    Article  Google Scholar 

  145. Scragg, J. J., Dale, P. J., Colombara, D. & Peter, L. M. Thermodynamic aspects of the synthesis of thin-film materials for solar cells. ChemPhysChem 13, 3035–3046 (2012).

    Article  Google Scholar 

  146. Ren, Y. et al. Evolution of Cu2ZnSnS4 during non-equilibrium annealing with quasi-in situ monitoring of sulfur partial pressure. Chem. Mater. 29, 3713–3722 (2017).

    Article  Google Scholar 

  147. Xie, H. et al. Impact of Na dynamics at the Cu2ZnSn(S,Se)4/CdS interface during post low temperature treatment of absorbers. ACS Appl. Mater. Interfaces 8, 5017–5024 (2016).

    Article  Google Scholar 

  148. Neuschitzer, M. et al. Complex surface chemistry of kesterites: Cu/Zn reordering after low temperature postdeposition annealing and its role in high performance devices. Chem. Mater. 27, 5279–5287 (2015).

    Article  Google Scholar 

  149. Jimenez-Arguijo, A. et al. Gradient doping in Cu2ZnSnSe4 by temperature and potential induced defect steering. Sol. Energy 262, 111883 (2023).

    Article  Google Scholar 

  150. Mendis, B. G. et al. The role of secondary phase precipitation on grain boundary electrical activity in Cu2ZnSnS4 (CZTS) photovoltaic absorber layer material. J. Appl. Phys. 112, 124508 (2012).

    Article  Google Scholar 

  151. He, M., Sun, K., Suryawanshi, M. P., Li, J. & Hao, X. Interface engineering of p–n heterojunction for kesterite photovoltaics: a progress review. J. Energy Chem. 60, 1–8 (2021).

    Article  Google Scholar 

  152. Li, J. et al. Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells. Nat. Energy 7, 754–764 (2022).

    Article  Google Scholar 

  153. Romanyuk, Y. E. et al. Doping and alloying of kesterites. J. Phys. Energy 1, 044004 (2019).

    Article  Google Scholar 

  154. Platzer-Björkman, C. et al. Back and front contacts in kesterite solar cells: state-of-the-art and open questions. J. Phys. Energy 1, 044005 (2019).

    Article  Google Scholar 

  155. Jimenez-Arguijo, A. et al. Small atom doping: a synergistic strategy to reduce SnZn recombination center concentration in Cu2ZnSnSe4. Sol. RRL 6, 2200580 (2022).

    Article  Google Scholar 

  156. El Khouja, O. et al. Exploring the synthesis of Cu2(Zn,Cd)SnS4 at high temperatures as a route for high-efficiency solar cells. Prog. Photovolt. Res. Appl. 33, 628–643 (2025).

    Article  Google Scholar 

  157. Scaffidi, R. et al. Ge-alloyed kesterite thin-film solar cells: previous investigations and current status—a comprehensive review. J. Mater. Chem. A 11, 13174–13194 (2023).

    Article  Google Scholar 

  158. Zhao, Y. et al. Energy band alignment and defect synergistic regulation enable air-solution-processed kesterite solar cells with the lowest VOC deficit. Adv. Mater. 37, 2409327 (2025).

    Article  Google Scholar 

  159. Jimenez-Arguijo, A. et al. Setting the baseline for the modelling of Kesterite solar cells: the case study of tandem application. Sol. Energy Mater. Sol. Cells 251, 112109 (2023).

    Article  Google Scholar 

  160. Abou-Ras, D. et al. A comprehensive analysis of recombination at grain boundaries in high-efficiency kesterite-type solar cells. Energy Environ. Mater. 8, e70048 (2025).

    Article  Google Scholar 

  161. Scaffidi, R. et al. Temperature- and light intensity-dependent current–voltage analysis applied to high-efficiency solution-processed kesterite solar cells. Newton 1, 100198 (2025).

    Article  Google Scholar 

  162. Isab, A. A. & Wazeer, M. I. M. Complexation of Zn(II), Cd(II) and Hg(II) with thiourea and selenourea: a 1H, 13C, 15N, 77Se and 113Cd solution and solid-state NMR study. J. Coord. Chem. 58, 529–537 (2005).

    Article  Google Scholar 

  163. Dimitrievska, M., Fairbrother, A., Saucedo, E., Pérez-Rodríguez, A. & Izquierdo-Roca, V. Secondary phase and Cu substitutional defect dynamics in kesterite solar cells: impact on optoelectronic properties. Sol. Energy Mater. Sol. Cells 149, 304–309 (2016).

    Article  Google Scholar 

  164. Sardashti, K. et al. Impact of nanoscale elemental distribution in high-performance kesterite solar cells. Adv. Energy Mater. 5, 1402180 (2015).

    Article  Google Scholar 

  165. Yin, W. J. et al. Engineering grain boundaries in Cu2ZnSnSe4 for better cell performance: a first-principle study. Adv. Energy Mater. 4, 1300712 (2014).

    Article  Google Scholar 

  166. Thersleff, T. et al. Chemically and morphologically distinct grain boundaries in Ge-doped Cu2ZnSnSe4 solar cells revealed with STEM-EELS. Mater. Des. 122, 102–109 (2017).

    Article  Google Scholar 

  167. Schwarz, T. et al. Atom probe tomography study of internal interfaces in Cu2ZnSnSe4 thin-films. J. Appl. Phys. 118, 095302 (2015).

    Article  Google Scholar 

  168. Park, J. S., Kim, S. & Walsh, A. Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors. Phys. Rev. Mater. 2, 014602 (2018).

    Article  Google Scholar 

  169. Kim, S., Márquez, J. A., Unold, T. & Walsh, A. Upper limit to the photovoltaic efficiency of imperfect crystals from first principles. Energy Environ. Sci. 13, 1481–1491 (2020).

    Article  Google Scholar 

  170. Chen, W., Dahliah, D., Rignanese, G. M. & Hautier, G. Origin of the low conversion efficiency in Cu2ZnSnS4 kesterite solar cells: the actual role of cation disorder. Energy Environ. Sci. 14, 3567–3578 (2021).

    Article  Google Scholar 

  171. Chen, S., Walsh, A., Gong, X. & Wei, S. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013).

    Article  Google Scholar 

  172. Kumar, M., Dubey, A., Adhikari, N., Venkatesan, S. & Qiao, Q. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134–3159 (2015).

    Article  Google Scholar 

  173. Crovetto, A. et al. Assessing the defect tolerance of kesterite-inspired solar absorbers. Energy Environ. Sci. 13, 3489–3503 (2020).

    Article  Google Scholar 

  174. Hsu, W. C., Bob, B., Yang, W., Chung, C. H. & Yang, Y. Reaction pathways for the formation of Cu2ZnSn(Se,S)4 absorber materials from liquid-phase hydrazine-based precursor inks. Energy Environ. Sci. 5, 8564–8571 (2012).

    Article  Google Scholar 

  175. Mitzi, D. B. N4H9Cu7S4: a hydrazinium-based salt with a layered Cu7S4-framework. Inorg. Chem. 46, 926–931 (2007).

    Article  Google Scholar 

  176. Mitzi, D. B. Synthesis, structure, and thermal properties of soluble hydrazinium germanium(IV) and Tin(IV) selenide salts. Inorg. Chem. 44, 3755–3761 (2005).

    Article  Google Scholar 

  177. Todorov, T., Sugimoto, H., Gunawan, O., Gokmen, T. & Mitzi, D. B. High-efficiency devices with pure solution-processed Cu2ZnSn(Se,S)4 absorbers. IEEE J. Photovolt. 4, 483–485 (2014).

    Article  Google Scholar 

  178. Redinger, A., Berg, D. M., Dale, P. J. & Siebentritt, S. The consequences of kesterite equilibria for efficient solar cells. J. Am. Chem. Soc. 133, 3320–3323 (2011).

    Article  Google Scholar 

  179. Xie, H. et al. Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation. ACS Appl. Mater. Interfaces 6, 12744–12751 (2014).

    Article  Google Scholar 

  180. Kim, S. Y. et al. Effect of Cu–Sn–Se liquid phase on grain growth and efficiency of CZTSSe solar cells. Adv. Energy Mater. 10, 1903173 (2020).

    Article  Google Scholar 

  181. Li, J. et al. Growth of Cu2ZnSnSe4 film under controllable Se vapor composition and impact of low Cu content on solar cell efficiency. ACS Appl. Mater. Interfaces 8, 10283–10292 (2016).

    Article  Google Scholar 

  182. Cong, J. et al. Unveiling the role of Ge in CZTSSe solar cells by advanced micro-to-atom scale characterizations. Adv. Sci. 11, 2305938 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This project received funding from: the European Union’s Horizon research and innovation programme under grant agreements 866018 (SENSATE) and 101151487 (LEKPV); Spanish Ministry of Science and Innovation projects PCI2023-145971-2 (ACT-FAST; from Clean Energy Transition Partnership Programme 2022), PID2022-140226OB-C31 and -C32 (INNO-PV) and PID2023-148976OB-C41 (CURIO-CITY); the National Key Research and Development Program of China (project 2019YFE0118100); the National Natural Science Foundation of China (project 22075150); and COST Association project CA-21148 (Renew-PV). This work is also part of the Maria de Maeztu Units of Excellence Programme (CEX2023-001300-M, funded by MICIU/AEI/10.13039/501100011033). The authors from the Universitat Politècnica de Catalunya and Catalonia Institute for Energy Research belong to the Micro and Nanotechnologies for Solar Energy Group (MNTSolar) Consolidated Research Group of the Generalitat de Catalunya (2021 SGR 01286). K.S. acknowledges the Australian Research Council Discovery Early Career Researcher Award (DE230100021) and support from the Australian Centre of Advanced Photovoltaics as a recipient of the ACAP Fellowship (RG172864-B). Z.J.L.-K. acknowledges the Spanish Ministry of Science and Innovation for the Ramón y Cajal Fellowship (RYC2021-033239-I). S.G. thanks the Serra Húnter Programme. X.H. acknowledges financial support from the Australian Research Council Future Fellowships scheme (FT190100756). E.S. acknowledges the ICREA Academia programme.

Author information

Authors and Affiliations

Authors

Contributions

A.J.-A., Y.G., J.L., H.X., X.H. and E.S. conceived of the article idea. A.J.-A. and Y.G. performed the literature search and curated the data. A.J.-A. wrote the original draft of the manuscript. A.J.-A., Y.G., I.C., O.E.K., J.L., K.S., Z.J.L.-K., S.G., H.X., A.P.-R., H.X. and E.S. reviewed and edited the manuscript. A.J.-A., Y.G., I.C., O.E.K. and S.G. visualized the results. J.L., K.S., Z.J.L.-K., S.G., X.H. and E.S. supervised the project. A.P.-R. and E.S. acquired funding. E.S. managed the project.

Corresponding authors

Correspondence to Alex Jimenez-Arguijo, Yuancai Gong, Xiaojing Hao or Edgardo Saucedo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez-Arguijo, A., Gong, Y., Caño, I. et al. Formation pathway of high-efficiency kesterite solar cells fabricated through molecular ink chemistry. Nat Energy (2026). https://doi.org/10.1038/s41560-025-01900-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41560-025-01900-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing