Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atomistic origins of anharmonic lattice dynamics and thermal expansion in perovskite photovoltaics

Abstract

Metal halide perovskites are swiftly becoming a leading class of photovoltaic materials, yet unlike conventional semiconductors, they exhibit highly anharmonic lattice vibrations that produce extreme rates of thermal expansion and substantial mismatch with other device layers. These effects are exacerbated under natural day/night cycling, where repeated heating and cooling drive cumulative stress, defect generation and accelerated degradation. Here we connect the atomistic origins of anharmonic lattice dynamics in perovskites with their macroscopic thermo-mechanical properties, from phonon–phonon interactions and local disorder to complex thermal–phase relations. We assess how both the degree of anharmonicity and thermal expansion rates vary across temperature, composition and phase, and highlight the emergence of anisotropic and even negative thermal expansion in low-symmetry perovskite phases. By linking fundamental physics to device-level challenges, we provide a framework for engineering durable perovskite absorbers and outline promising approaches to regulate thermal strain in the pursuit of long-lived, commercially viable solar cell technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermal cycling of the perovskite absorber.
Fig. 2: Anharmonic instabilities and phase transitions.
Fig. 3: Temperature-dependent disorder and lattice parameters.
Fig. 4: Phase-dependent thermal expansion rates.
Fig. 5: Mixing of A-site cations.
Fig. 6: Anisotropic expansion in an oriented thin film.

Similar content being viewed by others

References

  1. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    Article  Google Scholar 

  2. Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    Article  Google Scholar 

  3. Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016).

    Article  Google Scholar 

  4. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  Google Scholar 

  5. Walsh, A. & Stranks, S. D. Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett. 3, 1983–1990 (2018).

    Article  Google Scholar 

  6. Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017). Local disorder and symmetry-breaking is shown to emerge from polar fluctuations in the metal halide sublattice.

    Article  Google Scholar 

  7. Steele, J. A. et al. Phase transitions and anion exchange in all-inorganic halide perovskites. Acc. Mater. Res. 1, 3–15 (2020).

    Article  Google Scholar 

  8. Katan, C., Mohite, A. D. & Even, J. Entropy in halide perovskites. Nat. Mater. 17, 377–379 (2018).

    Article  Google Scholar 

  9. Wu, L. et al. Resilience pathways for halide perovskite photovoltaics under temperature cycling. Nat. Rev. Mater. 10, 536–549 (2025).

    Article  Google Scholar 

  10. Li, G. et al. Structure and performance evolution of perovskite solar cells under extreme temperatures. Adv. Energy Mater. 12, 2202887 (2022).

    Article  Google Scholar 

  11. Shen, Y. et al. Strain regulation retards natural operation decay of perovskite solar cells. Nature 635, 882–889 (2024). Periodic crystal strain during day/night cycling of PSCs is shown to be the central limitation towards long-term stable operation.

    Article  Google Scholar 

  12. Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).

    Article  Google Scholar 

  13. Chen, M. et al. Stress engineering for mitigating thermal cycling fatigue in perovskite photovoltaics. ACS Energy Lett. 9, 2582–2589 (2024).

    Article  Google Scholar 

  14. Li, G. et al. Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).

    Article  Google Scholar 

  15. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). This influential study attempted to standardize stability testing procedures for PSC research, which enables consistent and comparable data across different research laboratories.

    Article  Google Scholar 

  16. Yang, B. et al. Strain effects on halide perovskite solar cells. Chem. Soc. Rev. 51, 7509–7530 (2022).

    Article  Google Scholar 

  17. Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article  Google Scholar 

  18. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    Article  Google Scholar 

  19. Worhatch, R. J., Kim, H., Swainson, I. P., Yonkeu, A. L. & Billinge, S. J. L. Study of local structure in selected organic–inorganic perovskites in the Pmm phase. Chem. Mater. 20, 1272–1277 (2008). This work established that organic–inorganic perovskites in the archetypal cubic phase exhibit significant local structural distortions.

    Article  Google Scholar 

  20. Fu, Y., Jin, S. & Zhu, X.-Y. Stereochemical expression of ns2 electron pairs in metal halide perovskites. Nat. Rev. Chem. 5, 838–852 (2021).

    Article  Google Scholar 

  21. Caicedo-Dávila, S. et al. Disentangling the effects of structure and lone-pair electrons in the lattice dynamics of halide perovskites. Nat. Commun. 15, 4184 (2024).

    Article  Google Scholar 

  22. Yang, R. X., Skelton, J. M., da Silva, E. L., Frost, J. M. & Walsh, A. Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites. J. Chem. Phys. 152, 024703 (2020).

    Article  Google Scholar 

  23. Carignano, M. A., Aravindh, S. A., Roqan, I. S., Even, J. & Katan, C. Critical fluctuations and anharmonicity in lead iodide perovskites from molecular dynamics supercell simulations. J. Phys. Chem. C 121, 20729–20738 (2017).

    Article  Google Scholar 

  24. Fähnle, M. & Meyer, B. On the interpretation of thermal expansion measurements in ordered compounds. Scr. Mater. 38, 1131–1136 (1998).

    Article  Google Scholar 

  25. Dobrovolsky, A., Merdasa, A., Unger, E. L., Yartsev, A. & Scheblykin, I. G. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nat. Commun. 8, 34 (2017).

    Article  Google Scholar 

  26. Ge, C. et al. Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. C 122, 15973–15978 (2018).

    Article  Google Scholar 

  27. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  Google Scholar 

  28. Whalley, L. D., Frost, J. M., Jung, Y.-K. & Walsh, A. Theory and simulation of hybrid halide perovskites. J. Chem. Phys. 146, 220901 (2017).

    Article  Google Scholar 

  29. Pallikara, I., Kayastha, P., Skelton, J. M. & Whalley, L. D. The physical significance of imaginary phonon modes in crystals. Electron. Struct. 4, 033002 (2022).

    Article  Google Scholar 

  30. Adams, D. J. & Passerone, D. Insight into structural phase transitions from the decoupled anharmonic mode approximation. J. Phys. Condens. Matter 28, 305401 (2016).

    Article  Google Scholar 

  31. Leguy, A. M. A. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).

    Article  Google Scholar 

  32. Brivio, F. et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015).

    Article  Google Scholar 

  33. Harwell, J. R. et al. Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites. Phys. Rev. Mater. 2, 065404 (2018).

    Article  Google Scholar 

  34. Hu, X. et al. Crystal structures and rotational dynamics of a two-dimensional metal halide perovskite (OA)2PbI4. J. Chem. Phys. 152, 014703 (2020).

    Article  Google Scholar 

  35. Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).

    Article  Google Scholar 

  36. Tan, W. L. & McNeill, C. R. X-ray diffraction of photovoltaic perovskites: principles and applications. Appl. Phys. Rev. 9, 021310 (2022).

    Article  Google Scholar 

  37. Hooton, D. J. L. I. A new treatment of anharmonicity in lattice thermodynamics: I. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 46, 422–432 (1955). This work outlines the SCP theory that is widely used to simulate anharmonic crystals at finite temperature.

    Article  MathSciNet  Google Scholar 

  38. Zacharias, M., Volonakis, G., Giustino, F. & Even, J. Anharmonic lattice dynamics via the special displacement method. Phys. Rev. B 108, 035155 (2023).

    Article  Google Scholar 

  39. Patrick, C. E., Jacobsen, K. W. & Thygesen, K. S. Anharmonic stabilization and band gap renormalization in the perovskite CsSnI3. Phys. Rev. B 92, 201205 (2015).

    Article  Google Scholar 

  40. Bertolotti, F. et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano 11, 3819–3831 (2017).

    Article  Google Scholar 

  41. McAndrews, G. R., Guo, B., Morales, D. A., Amassian, A. & McGehee, M. D. How the dynamics of attachment to the substrate influence stress in metal halide perovskites. APL Energy 1, 036110 (2023).

    Article  Google Scholar 

  42. Zhao, X.-G., Dalpian, G. M., Wang, Z. & Zunger, A. Polymorphous nature of cubic halide perovskites. Phys. Rev. B 101, 155137 (2020).

    Article  Google Scholar 

  43. Zacharias, M., Volonakis, G., Giustino, F. & Even, J. Anharmonic electron-phonon coupling in ultrasoft and locally disordered perovskites. npj Comput. Mater. 9, 153 (2023).

    Article  Google Scholar 

  44. Zacharias, M. et al. Roadmap for electronic structure, anharmonicity, and electron-phonon calculations in locally disordered inorganic and hybrid halide perovskites. Preprint at https://arxiv.org/abs/2506.10402 (2025).

  45. Baroni, S., de Gironcoli, S., dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  Google Scholar 

  46. Mu, H. et al. Physical mechanism and chemical trends in the thermal expansion of inorganic halide perovskites. J. Phys. Chem. Lett. 14, 190–198 (2023). This work examines the chemical dependence of anharmonicity and thermal expansion rates in different perovskite compositions.

    Article  Google Scholar 

  47. Schueller, E. C. et al. Crystal structure evolution and notable thermal expansion in hybrid perovskites formamidinium tin iodide and formamidinium lead bromide. Inorg. Chem. 57, 695–701 (2018).

    Article  Google Scholar 

  48. Adams, D. J. & Churakov, S. V. Classification of perovskite structural types with dynamical octahedral tilting. IUCrJ 10, 309–320 (2023).

    Article  Google Scholar 

  49. Tyson, T. A., Gao, W., Chen, Y.-S., Ghose, S. & Yan, Y. Large thermal motion in halide perovskites. Sci. Rep. 7, 9401 (2017).

    Article  Google Scholar 

  50. Simenas, M., Gagor, A., Banys, J. & Maczka, M. Phase transitions and dynamics in mixed three- and low-dimensional lead halide perovskites. Chem. Rev. 124, 2281–2326 (2024).

    Article  Google Scholar 

  51. Marronnier, A. et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12, 3477–3486 (2018).

    Article  Google Scholar 

  52. Trots, D. M. & Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 69, 2520–2526 (2008).

    Article  Google Scholar 

  53. Lahnsteiner, J. & Bokdam, M. Anharmonic lattice dynamics in large thermodynamic ensembles with machine-learning force fields: CsPbBr3, a phonon liquid with Cs rattlers. Phys. Rev. B 105, 024302 (2022).

    Article  Google Scholar 

  54. Fransson, E., Wiktor, J. & Erhart, P. Phase transitions in inorganic halide perovskites from machine-learned potentials. J. Phys. Chem. C 127, 13773–13781 (2023).

    Article  Google Scholar 

  55. Braeckevelt, T. et al. Accurately determining the phase transition temperature of CsPbI3 via random-phase approximation calculations and phase-transferable machine learning potentials. Chem. Mater. 34, 8561–8576 (2022).

    Article  Google Scholar 

  56. Liang, X., Klarbring, J. & Walsh, A. Phase stability and transformations in lead mixed halide perovskites from machine learning force fields. Chem. Mater. https://doi.org/10.1021/acs.chemmater.5c01730 (2025).

  57. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    Article  Google Scholar 

  58. Egger, D. A., Rappe, A. M. & Kronik, L. Hybrid organic–inorganic perovskites on the move. Acc. Chem. Res. 49, 573–581 (2016).

    Article  Google Scholar 

  59. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).

    Article  Google Scholar 

  60. Wasylishen, R. E., Knop, O. & Macdonald, J. B. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985). This work was foundational for understanding the dynamic disorder and structural properties of organic–inorganic hybrid perovskites.

    Article  Google Scholar 

  61. Miyata, K., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal–liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Article  Google Scholar 

  62. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). This study reports the use of an MHP absorber in a solar cell.

    Article  Google Scholar 

  63. Park, B.-w. & Seok, S. I. Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31, 1805337 (2019).

    Article  Google Scholar 

  64. Govinda, S. et al. Critical comparison of FAPbX3 and MAPbX3 (X = Br and Cl): how do they differ? J. Phys. Chem. C 122, 13758–13766 (2018).

    Article  Google Scholar 

  65. Govinda, S. et al. Behavior of methylammonium dipoles in MAPbX3 (X = Br and I). J. Phys. Chem. Lett. 8, 4113–4121 (2017).

    Article  Google Scholar 

  66. Beecher, A. N. et al. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1, 880–887 (2016).

    Article  Google Scholar 

  67. Wang, P. et al. Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J. Phys. Chem. Lett. 8, 2119–2125 (2017).

    Article  Google Scholar 

  68. Cohen, A. et al. Diverging expressions of anharmonicity in halide perovskites. Adv. Mater. 34, 2107932 (2022).

    Article  Google Scholar 

  69. Ferreira, A. C. et al. Direct evidence of weakly dispersed and strongly anharmonic optical phonons in hybrid perovskites. Commun. Phys. 3, 48 (2020).

    Article  Google Scholar 

  70. Balkanski, M., Wallis, R. F. & Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 28, 1928–1934 (1983).

    Article  Google Scholar 

  71. Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966).

    Article  Google Scholar 

  72. Menéndez, J. & Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: anharmonic effects. Phys. Rev. B 29, 2051–2059 (1984).

    Article  Google Scholar 

  73. Mączka, M. & Ptak, M. Temperature-dependent Raman studies of FAPbBr3 and MAPbBr3 perovskites: effect of phase transitions on molecular dynamics and lattice distortion. Solids 3, 111–121 (2022).

    Article  Google Scholar 

  74. Nakada, K., Matsumoto, Y., Shimoi, Y., Yamada, K. & Furukawa, Y. Temperature-dependent evolution of Raman spectra of methylammonium lead halide perovskites, CH3NH3PbX3 (X = I, Br). Molecules 24, 626 (2019).

    Article  Google Scholar 

  75. Hoffman, A. E. J. et al. Understanding the phase transition mechanism in the lead halide perovskite CsPbBr3 via theoretical and experimental GIWAXS and Raman spectroscopy. APL Mater. 11, 041124 (2023).

    Article  Google Scholar 

  76. Mante, P.-A., Stoumpos, C. C., Kanatzidis, M. G. & Yartsev, A. Directional negative thermal expansion and large Poisson ratio in CH3NH3PbI3 perovskite revealed by strong coherent shear phonon generation. J. Phys. Chem. Lett. 9, 3161–3166 (2018).

    Article  Google Scholar 

  77. Dhanabalan, B. et al. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 14, 4689–4697 (2020).

    Article  Google Scholar 

  78. Menahem, M. et al. Strongly anharmonic octahedral tilting in two-dimensional hybrid halide perovskites. ACS Nano 15, 10153–10162 (2021).

    Article  Google Scholar 

  79. Miller, W., Smith, C. W., Mackenzie, D. S. & Evans, K. E. Negative thermal expansion: a review. J. Mater. Sci. 44, 5441–5451 (2009).

    Article  Google Scholar 

  80. Goodwin, A. L. & Kepert, C. J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys. Rev. B 71, 140301 (2005).

    Article  Google Scholar 

  81. Muscarella, L. A. et al. Which ion dominates the temperature and pressure response of halide perovskites and elpasolites? J. Phys. Chem. Lett. 14, 9042–9051 (2023).

    Article  Google Scholar 

  82. Haeger, T., Heiderhoff, R. & Riedl, T. Thermal properties of metal-halide perovskites. J. Mater. Chem. C 8, 14289–14311 (2020).

    Article  Google Scholar 

  83. Steele, J. A. et al. Trojans that flip the black phase: impurity-driven stabilization and spontaneous strain suppression in γ-CsPbI3 perovskite. J. Am. Chem. Soc. 143, 10500–10508 (2021).

    Article  Google Scholar 

  84. Sun, S., Fang, Y., Kieslich, G., White, T. J. & Cheetham, A. K. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br, Cl), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015).

    Article  Google Scholar 

  85. Fabini, D. H. et al. Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide. Angew. Chem. Int. Ed. 55, 15392–15396 (2016). This study highlights the large difference in thermal expansion rates across different phases of the FAPbI3 perovskite.

    Article  Google Scholar 

  86. Jacobsson, T. J., Schwan, L. J., Ottosson, M., Hagfeldt, A. & Edvinsson, T. Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction. Inorg. Chem. 54, 10678–10685 (2015).

    Article  Google Scholar 

  87. Wang, S. et al. Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand. Nat. Commun. 14, 2216 (2023).

    Article  Google Scholar 

  88. Steele, J. A. et al. Texture formation in polycrystalline thin films of all-inorganic lead halide perovskite. Adv. Mater. 33, 2007224 (2021).

    Article  Google Scholar 

  89. Chen, J. et al. Oriented halide perovskite nanostructures and thin films for optoelectronics. Chem. Rev. 121, 12112–12180 (2021).

    Article  Google Scholar 

  90. Cliffe, M. J. & Goodwin, A. L. PASCal: a principal axis strain calculator for thermal expansion and compressibility determination. J. Appl. Crystallogr. 45, 1321–1329 (2012).

    Article  Google Scholar 

  91. Knoop, F., Purcell, T. A. R., Scheffler, M. & Carbogno, C. Anharmonicity measure for materials. Phys. Rev. Mater. 4, 083809 (2020).

    Article  Google Scholar 

  92. Angel, R. J., Zhao, J. & Ross, N. L. General rules for predicting phase transitions in perovskites due to octahedral tilting. Phys. Rev. Lett. 95, 025503 (2005).

    Article  Google Scholar 

  93. Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    Article  Google Scholar 

  94. Jakob, K. S., Walsh, A., Reuter, K. & Margraf, J. T. Learning crystallographic disorder: bridging prediction and experiment in materials discovery. Adv. Mater. https://doi.org/10.1002/adma.202514226 (2025).

  95. Xue, D.-J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020). This work reports the regulation of thermal-induced strain in perovskite thin films via engineering the charge-transport layer.

    Article  Google Scholar 

  96. Ma, B. S., Lee, J.-W., Park, H., Kim, B. J. & Kim, T.-S. Thermomechanical behavior of poly(3-hexylthiophene) thin films on the water surface. ACS Omega 7, 19706–19713 (2022).

    Article  Google Scholar 

  97. Joshi, S. et al. Bimodal temperature behavior of structure and mobility in high molecular weight P3HT thin films. Macromolecules 42, 4651–4660 (2009).

    Article  Google Scholar 

  98. Handa, T., Yamada, T., Nagai, M. & Kanemitsu, Y. Phonon, thermal, and thermo-optical properties of halide perovskites. Phys. Chem. Chem. Phys. 22, 26069–26087 (2020).

    Article  Google Scholar 

  99. Duan, T. et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384, 878–884 (2024).

    Article  Google Scholar 

  100. McAndrews, G. R. et al. Why perovskite thermal stress is unaffected by thin contact layers. Adv. Energy Mater. 14, 2400764 (2024).

    Article  Google Scholar 

  101. Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).

    Article  Google Scholar 

  102. Leng, X. et al. Mechanical strengthening of a perovskite–substrate heterointerface for highly stable solar cells. Energy Environ. Sci. 17, 4295–4303 (2024).

    Article  Google Scholar 

  103. Liu, K., Wang, Z., Qu, S. & Ding, L. Stress and strain in perovskite/silicon tandem solar cells. Nano-Micro Lett. 15, 59 (2023).

    Article  Google Scholar 

  104. Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Article  Google Scholar 

  105. Steele, J. A. et al. How to GIWAXS: grazing incidence wide angle X-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 13, 2300760 (2023).

    Article  Google Scholar 

  106. Zhang, Y., He, L., Cai, Y., Zhang, J. & Wang, P. Aza[5]helicene-derived semiconducting polymers for improved performance in perovskite solar cells: exploring energetic and morphological influences. Angew. Chem. 136, e202401605 (2024).

    Article  Google Scholar 

  107. Awartani, O. et al. Correlating stiffness, ductility, and morphology of polymer:fullerene films for solar cell applications. Adv. Energy Mater. 3, 399–406 (2013).

    Article  Google Scholar 

  108. Li, M., Xiang, K., Shen, Q. & Zhang, L. in Ceramics for Environmental and Energy Applications II: Ceramic Transactions Vol. 246 (eds Dogan, F. et al.) 57–64 (Wiley, 2014); https://doi.org/10.1002/9781118771327.ch6

  109. Mashreghi, A. Determining the volume thermal expansion coefficient of TiO2 nanoparticle by molecular dynamics simulation. Comput. Mater. Sci. 62, 60–64 (2012).

    Article  Google Scholar 

  110. Fan, S. H., Hou, H. J. & Guo, H. L. DFT study of elastic and thermodynamic properties of solar material Cu2ZnSnS4. J. Ovonic Res. 20, 601–615 (2024).

    Article  Google Scholar 

  111. Zhao, H., Prine, N., Kundu, S., Ma, G. & Gu, X. Effect of thermal stress on morphology in high-performance organic photovoltaic blends. JACS Au 4, 4334–4344 (2024).

    Article  Google Scholar 

  112. Moulton, J. & Smith, P. Electrical and mechanical properties of oriented poly(3-alkylthiophenes): 2. Effect of side-chain length. Polymer 33, 2340–2347 (1992).

    Article  Google Scholar 

  113. Afsari, M., Boochani, A. & Hantezadeh, M. Electronic, optical and elastic properties of cubic perovskite CsPbI3: using first principles study. Optik 127, 11433–11443 (2016).

    Article  Google Scholar 

  114. Song, W. et al. Entangled structure morphology by polymer guest enabling mechanically robust organic solar cells with efficiencies of over 16.5%. Matter 5, 1877–1889 (2022).

    Article  Google Scholar 

  115. Sun, S. et al. Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. ChemSusChem 10, 3740–3745 (2017).

    Article  Google Scholar 

  116. Ko, U.-H. et al. First-principles study on the elastic, electronic and optical properties of all-inorganic halide perovskite solid solutions of CsPb(Br1−xClx)3 within the virtual crystal approximation. RSC Adv. 12, 9755–9762 (2022).

    Article  Google Scholar 

  117. Somiya, S. et al. (eds) Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties 2nd edn (Elsevier, 2013).

  118. Vogel, W. High-temperature structure of C60: an in situ X-ray diffraction study. Appl. Phys. A 62, 295–301 (1996).

    Google Scholar 

  119. Gao, Q. et al. Improved mechanical properties of SnO2:F thin film by structural modification. Ceram. Int. 40, 2557–2564 (2014).

    Article  Google Scholar 

  120. Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).

    Article  Google Scholar 

  121. Li, J. et al. Mechanical properties of single crystal organic–inorganic hybrid perovskite MAPbX3 (MA = CH3NH3, X = Cl, Br, I). Coatings 13, 854 (2023).

    Article  Google Scholar 

  122. Landolt, H. & Börnstein, R. Numerical Data and Functional Relationships in Science and Technology, Vol. 44E (Springer, 2012).

  123. Rodová, M., Brožek, J., Knížek, K. & Nitsch, K. Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003).

    Article  Google Scholar 

  124. Brandrup, J. et al. (eds) Polymer Handbook 4th edn (Wiley, 1999).

  125. Adachi, S. Properties of Group-IV, III-V and II-VI Semiconductors (Wiley, 2005).

  126. Lin, Y.-C. et al. Residual stress in CIGS thin film solar cells on polyimide: simulation and experiments. J. Mater. Sci. Mater. Electron. 25, 461–465 (2014).

    Article  Google Scholar 

  127. Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012).

    Article  Google Scholar 

  128. Dai, Z. et al. The mechanical behavior of metal-halide perovskites: elasticity, plasticity, fracture, and creep. Scr. Mater. 223, 115064 (2023).

    Article  Google Scholar 

  129. Liu, J. et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48, 585–591 (2015).

    Article  Google Scholar 

  130. Kuhn, M. et al. Thermal expansion behavior of PM6 studied using in situ wide-angle X-ray scattering. Adv. Funct. Mater. 35, 2509532 (2025).

    Article  Google Scholar 

  131. Cverna, F. Thermal Properties of Metals (ASM International, 2002).

  132. Jaglarz, J., Nosidlak, N. & Wolska, N. Thermo-optical properties of conducted polythiophene polymer films used in electroluminescent devices. Opt. Quantum Electron. 48, 392 (2016).

    Article  Google Scholar 

  133. Yang, W., Zhong, D., Shi, M., Qu, S. & Chen, H. Toward highly thermal stable perovskite solar cells by rational design of interfacial layer. iScience 22, 534–543 (2019).

    Article  Google Scholar 

  134. Music, D. & Elalfy, L. Tuneable thermal expansion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. J. Phys. Condens. Matter 31, 125101 (2019).

    Article  Google Scholar 

  135. Nasr Saleh, M. & Lubineau, G. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: a micro-mechanical investigation. Sol. Energy Mater. Sol. Cells 130, 199–207 (2014).

    Article  Google Scholar 

  136. Yamamoto, N., Makino, H. & Yamamoto, T. Young’s modulus and coefficient of linear thermal expansion of ZnO conductive and transparent ultra-thin films. Adv. Mater. Sci. Eng. https://doi.org/10.1155/2011/136127 (2011).

  137. Ottermann, C. R., Kuschnereit, R., Anderson, O., Hess, P. & Bange, K. Young’s modulus and density of thin TiO2 films produced by different methods. MRS Online Proc. Libr. 436, 251–256 (1996).

    Article  Google Scholar 

  138. Wang, C. et al. Anisotropic mechanical properties of α-MoO3 nanosheets. Nanoscale 16, 4140–4147 (2024).

    Article  Google Scholar 

  139. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

  140. Chhajlany, S. C. & Malnev, V. N. Bound states of anharmonic potentials. Phys. Rev. A 42, 3111–3114 (1990).

    Article  Google Scholar 

  141. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 28, 3384–3392 (1972).

    Article  Google Scholar 

  142. Dos Reis, R. et al. Determination of the structural phase and octahedral rotation angle in halide perovskites. Appl. Phys. Lett. 112, 071901 (2018).

    Article  Google Scholar 

  143. Zhang, L. et al. Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing. Nat. Commun. 15, 5484 (2024).

    Article  Google Scholar 

  144. Morse, P. M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929).

    Article  Google Scholar 

Download references

Acknowledgements

J.A.S. is grateful to the many researchers who provided their original data used in this work, and for the productive discussions had with C. Verdi, D. Chernyshov and S. M. J. Rogge. This work was supported by the Australian Research Council (DE230100173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian A. Steele.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Energy thanks Guixiang Li and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 1

Survey data of thermal expansion and Young’s modulus values of different solar cell-related materials.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steele, J.A. Atomistic origins of anharmonic lattice dynamics and thermal expansion in perovskite photovoltaics. Nat Energy (2026). https://doi.org/10.1038/s41560-025-01938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41560-025-01938-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing