Abstract
Metal halide perovskites are swiftly becoming a leading class of photovoltaic materials, yet unlike conventional semiconductors, they exhibit highly anharmonic lattice vibrations that produce extreme rates of thermal expansion and substantial mismatch with other device layers. These effects are exacerbated under natural day/night cycling, where repeated heating and cooling drive cumulative stress, defect generation and accelerated degradation. Here we connect the atomistic origins of anharmonic lattice dynamics in perovskites with their macroscopic thermo-mechanical properties, from phonon–phonon interactions and local disorder to complex thermal–phase relations. We assess how both the degree of anharmonicity and thermal expansion rates vary across temperature, composition and phase, and highlight the emergence of anisotropic and even negative thermal expansion in low-symmetry perovskite phases. By linking fundamental physics to device-level challenges, we provide a framework for engineering durable perovskite absorbers and outline promising approaches to regulate thermal strain in the pursuit of long-lived, commercially viable solar cell technologies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).
Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).
Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016).
Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).
Walsh, A. & Stranks, S. D. Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett. 3, 1983–1990 (2018).
Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017). Local disorder and symmetry-breaking is shown to emerge from polar fluctuations in the metal halide sublattice.
Steele, J. A. et al. Phase transitions and anion exchange in all-inorganic halide perovskites. Acc. Mater. Res. 1, 3–15 (2020).
Katan, C., Mohite, A. D. & Even, J. Entropy in halide perovskites. Nat. Mater. 17, 377–379 (2018).
Wu, L. et al. Resilience pathways for halide perovskite photovoltaics under temperature cycling. Nat. Rev. Mater. 10, 536–549 (2025).
Li, G. et al. Structure and performance evolution of perovskite solar cells under extreme temperatures. Adv. Energy Mater. 12, 2202887 (2022).
Shen, Y. et al. Strain regulation retards natural operation decay of perovskite solar cells. Nature 635, 882–889 (2024). Periodic crystal strain during day/night cycling of PSCs is shown to be the central limitation towards long-term stable operation.
Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).
Chen, M. et al. Stress engineering for mitigating thermal cycling fatigue in perovskite photovoltaics. ACS Energy Lett. 9, 2582–2589 (2024).
Li, G. et al. Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). This influential study attempted to standardize stability testing procedures for PSC research, which enables consistent and comparable data across different research laboratories.
Yang, B. et al. Strain effects on halide perovskite solar cells. Chem. Soc. Rev. 51, 7509–7530 (2022).
Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).
Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).
Worhatch, R. J., Kim, H., Swainson, I. P., Yonkeu, A. L. & Billinge, S. J. L. Study of local structure in selected organic–inorganic perovskites in the Pm3̅m phase. Chem. Mater. 20, 1272–1277 (2008). This work established that organic–inorganic perovskites in the archetypal cubic phase exhibit significant local structural distortions.
Fu, Y., Jin, S. & Zhu, X.-Y. Stereochemical expression of ns2 electron pairs in metal halide perovskites. Nat. Rev. Chem. 5, 838–852 (2021).
Caicedo-Dávila, S. et al. Disentangling the effects of structure and lone-pair electrons in the lattice dynamics of halide perovskites. Nat. Commun. 15, 4184 (2024).
Yang, R. X., Skelton, J. M., da Silva, E. L., Frost, J. M. & Walsh, A. Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites. J. Chem. Phys. 152, 024703 (2020).
Carignano, M. A., Aravindh, S. A., Roqan, I. S., Even, J. & Katan, C. Critical fluctuations and anharmonicity in lead iodide perovskites from molecular dynamics supercell simulations. J. Phys. Chem. C 121, 20729–20738 (2017).
Fähnle, M. & Meyer, B. On the interpretation of thermal expansion measurements in ordered compounds. Scr. Mater. 38, 1131–1136 (1998).
Dobrovolsky, A., Merdasa, A., Unger, E. L., Yartsev, A. & Scheblykin, I. G. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nat. Commun. 8, 34 (2017).
Ge, C. et al. Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. C 122, 15973–15978 (2018).
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
Whalley, L. D., Frost, J. M., Jung, Y.-K. & Walsh, A. Theory and simulation of hybrid halide perovskites. J. Chem. Phys. 146, 220901 (2017).
Pallikara, I., Kayastha, P., Skelton, J. M. & Whalley, L. D. The physical significance of imaginary phonon modes in crystals. Electron. Struct. 4, 033002 (2022).
Adams, D. J. & Passerone, D. Insight into structural phase transitions from the decoupled anharmonic mode approximation. J. Phys. Condens. Matter 28, 305401 (2016).
Leguy, A. M. A. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
Brivio, F. et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015).
Harwell, J. R. et al. Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites. Phys. Rev. Mater. 2, 065404 (2018).
Hu, X. et al. Crystal structures and rotational dynamics of a two-dimensional metal halide perovskite (OA)2PbI4. J. Chem. Phys. 152, 014703 (2020).
Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).
Tan, W. L. & McNeill, C. R. X-ray diffraction of photovoltaic perovskites: principles and applications. Appl. Phys. Rev. 9, 021310 (2022).
Hooton, D. J. L. I. A new treatment of anharmonicity in lattice thermodynamics: I. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 46, 422–432 (1955). This work outlines the SCP theory that is widely used to simulate anharmonic crystals at finite temperature.
Zacharias, M., Volonakis, G., Giustino, F. & Even, J. Anharmonic lattice dynamics via the special displacement method. Phys. Rev. B 108, 035155 (2023).
Patrick, C. E., Jacobsen, K. W. & Thygesen, K. S. Anharmonic stabilization and band gap renormalization in the perovskite CsSnI3. Phys. Rev. B 92, 201205 (2015).
Bertolotti, F. et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano 11, 3819–3831 (2017).
McAndrews, G. R., Guo, B., Morales, D. A., Amassian, A. & McGehee, M. D. How the dynamics of attachment to the substrate influence stress in metal halide perovskites. APL Energy 1, 036110 (2023).
Zhao, X.-G., Dalpian, G. M., Wang, Z. & Zunger, A. Polymorphous nature of cubic halide perovskites. Phys. Rev. B 101, 155137 (2020).
Zacharias, M., Volonakis, G., Giustino, F. & Even, J. Anharmonic electron-phonon coupling in ultrasoft and locally disordered perovskites. npj Comput. Mater. 9, 153 (2023).
Zacharias, M. et al. Roadmap for electronic structure, anharmonicity, and electron-phonon calculations in locally disordered inorganic and hybrid halide perovskites. Preprint at https://arxiv.org/abs/2506.10402 (2025).
Baroni, S., de Gironcoli, S., dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Mu, H. et al. Physical mechanism and chemical trends in the thermal expansion of inorganic halide perovskites. J. Phys. Chem. Lett. 14, 190–198 (2023). This work examines the chemical dependence of anharmonicity and thermal expansion rates in different perovskite compositions.
Schueller, E. C. et al. Crystal structure evolution and notable thermal expansion in hybrid perovskites formamidinium tin iodide and formamidinium lead bromide. Inorg. Chem. 57, 695–701 (2018).
Adams, D. J. & Churakov, S. V. Classification of perovskite structural types with dynamical octahedral tilting. IUCrJ 10, 309–320 (2023).
Tyson, T. A., Gao, W., Chen, Y.-S., Ghose, S. & Yan, Y. Large thermal motion in halide perovskites. Sci. Rep. 7, 9401 (2017).
Simenas, M., Gagor, A., Banys, J. & Maczka, M. Phase transitions and dynamics in mixed three- and low-dimensional lead halide perovskites. Chem. Rev. 124, 2281–2326 (2024).
Marronnier, A. et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12, 3477–3486 (2018).
Trots, D. M. & Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 69, 2520–2526 (2008).
Lahnsteiner, J. & Bokdam, M. Anharmonic lattice dynamics in large thermodynamic ensembles with machine-learning force fields: CsPbBr3, a phonon liquid with Cs rattlers. Phys. Rev. B 105, 024302 (2022).
Fransson, E., Wiktor, J. & Erhart, P. Phase transitions in inorganic halide perovskites from machine-learned potentials. J. Phys. Chem. C 127, 13773–13781 (2023).
Braeckevelt, T. et al. Accurately determining the phase transition temperature of CsPbI3 via random-phase approximation calculations and phase-transferable machine learning potentials. Chem. Mater. 34, 8561–8576 (2022).
Liang, X., Klarbring, J. & Walsh, A. Phase stability and transformations in lead mixed halide perovskites from machine learning force fields. Chem. Mater. https://doi.org/10.1021/acs.chemmater.5c01730 (2025).
Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).
Egger, D. A., Rappe, A. M. & Kronik, L. Hybrid organic–inorganic perovskites on the move. Acc. Chem. Res. 49, 573–581 (2016).
Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).
Wasylishen, R. E., Knop, O. & Macdonald, J. B. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985). This work was foundational for understanding the dynamic disorder and structural properties of organic–inorganic hybrid perovskites.
Miyata, K., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal–liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). This study reports the use of an MHP absorber in a solar cell.
Park, B.-w. & Seok, S. I. Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31, 1805337 (2019).
Govinda, S. et al. Critical comparison of FAPbX3 and MAPbX3 (X = Br and Cl): how do they differ? J. Phys. Chem. C 122, 13758–13766 (2018).
Govinda, S. et al. Behavior of methylammonium dipoles in MAPbX3 (X = Br and I). J. Phys. Chem. Lett. 8, 4113–4121 (2017).
Beecher, A. N. et al. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1, 880–887 (2016).
Wang, P. et al. Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J. Phys. Chem. Lett. 8, 2119–2125 (2017).
Cohen, A. et al. Diverging expressions of anharmonicity in halide perovskites. Adv. Mater. 34, 2107932 (2022).
Ferreira, A. C. et al. Direct evidence of weakly dispersed and strongly anharmonic optical phonons in hybrid perovskites. Commun. Phys. 3, 48 (2020).
Balkanski, M., Wallis, R. F. & Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 28, 1928–1934 (1983).
Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966).
Menéndez, J. & Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: anharmonic effects. Phys. Rev. B 29, 2051–2059 (1984).
Mączka, M. & Ptak, M. Temperature-dependent Raman studies of FAPbBr3 and MAPbBr3 perovskites: effect of phase transitions on molecular dynamics and lattice distortion. Solids 3, 111–121 (2022).
Nakada, K., Matsumoto, Y., Shimoi, Y., Yamada, K. & Furukawa, Y. Temperature-dependent evolution of Raman spectra of methylammonium lead halide perovskites, CH3NH3PbX3 (X = I, Br). Molecules 24, 626 (2019).
Hoffman, A. E. J. et al. Understanding the phase transition mechanism in the lead halide perovskite CsPbBr3 via theoretical and experimental GIWAXS and Raman spectroscopy. APL Mater. 11, 041124 (2023).
Mante, P.-A., Stoumpos, C. C., Kanatzidis, M. G. & Yartsev, A. Directional negative thermal expansion and large Poisson ratio in CH3NH3PbI3 perovskite revealed by strong coherent shear phonon generation. J. Phys. Chem. Lett. 9, 3161–3166 (2018).
Dhanabalan, B. et al. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 14, 4689–4697 (2020).
Menahem, M. et al. Strongly anharmonic octahedral tilting in two-dimensional hybrid halide perovskites. ACS Nano 15, 10153–10162 (2021).
Miller, W., Smith, C. W., Mackenzie, D. S. & Evans, K. E. Negative thermal expansion: a review. J. Mater. Sci. 44, 5441–5451 (2009).
Goodwin, A. L. & Kepert, C. J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys. Rev. B 71, 140301 (2005).
Muscarella, L. A. et al. Which ion dominates the temperature and pressure response of halide perovskites and elpasolites? J. Phys. Chem. Lett. 14, 9042–9051 (2023).
Haeger, T., Heiderhoff, R. & Riedl, T. Thermal properties of metal-halide perovskites. J. Mater. Chem. C 8, 14289–14311 (2020).
Steele, J. A. et al. Trojans that flip the black phase: impurity-driven stabilization and spontaneous strain suppression in γ-CsPbI3 perovskite. J. Am. Chem. Soc. 143, 10500–10508 (2021).
Sun, S., Fang, Y., Kieslich, G., White, T. J. & Cheetham, A. K. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br, Cl), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015).
Fabini, D. H. et al. Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide. Angew. Chem. Int. Ed. 55, 15392–15396 (2016). This study highlights the large difference in thermal expansion rates across different phases of the FAPbI3 perovskite.
Jacobsson, T. J., Schwan, L. J., Ottosson, M., Hagfeldt, A. & Edvinsson, T. Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction. Inorg. Chem. 54, 10678–10685 (2015).
Wang, S. et al. Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand. Nat. Commun. 14, 2216 (2023).
Steele, J. A. et al. Texture formation in polycrystalline thin films of all-inorganic lead halide perovskite. Adv. Mater. 33, 2007224 (2021).
Chen, J. et al. Oriented halide perovskite nanostructures and thin films for optoelectronics. Chem. Rev. 121, 12112–12180 (2021).
Cliffe, M. J. & Goodwin, A. L. PASCal: a principal axis strain calculator for thermal expansion and compressibility determination. J. Appl. Crystallogr. 45, 1321–1329 (2012).
Knoop, F., Purcell, T. A. R., Scheffler, M. & Carbogno, C. Anharmonicity measure for materials. Phys. Rev. Mater. 4, 083809 (2020).
Angel, R. J., Zhao, J. & Ross, N. L. General rules for predicting phase transitions in perovskites due to octahedral tilting. Phys. Rev. Lett. 95, 025503 (2005).
Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).
Jakob, K. S., Walsh, A., Reuter, K. & Margraf, J. T. Learning crystallographic disorder: bridging prediction and experiment in materials discovery. Adv. Mater. https://doi.org/10.1002/adma.202514226 (2025).
Xue, D.-J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020). This work reports the regulation of thermal-induced strain in perovskite thin films via engineering the charge-transport layer.
Ma, B. S., Lee, J.-W., Park, H., Kim, B. J. & Kim, T.-S. Thermomechanical behavior of poly(3-hexylthiophene) thin films on the water surface. ACS Omega 7, 19706–19713 (2022).
Joshi, S. et al. Bimodal temperature behavior of structure and mobility in high molecular weight P3HT thin films. Macromolecules 42, 4651–4660 (2009).
Handa, T., Yamada, T., Nagai, M. & Kanemitsu, Y. Phonon, thermal, and thermo-optical properties of halide perovskites. Phys. Chem. Chem. Phys. 22, 26069–26087 (2020).
Duan, T. et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384, 878–884 (2024).
McAndrews, G. R. et al. Why perovskite thermal stress is unaffected by thin contact layers. Adv. Energy Mater. 14, 2400764 (2024).
Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).
Leng, X. et al. Mechanical strengthening of a perovskite–substrate heterointerface for highly stable solar cells. Energy Environ. Sci. 17, 4295–4303 (2024).
Liu, K., Wang, Z., Qu, S. & Ding, L. Stress and strain in perovskite/silicon tandem solar cells. Nano-Micro Lett. 15, 59 (2023).
Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).
Steele, J. A. et al. How to GIWAXS: grazing incidence wide angle X-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 13, 2300760 (2023).
Zhang, Y., He, L., Cai, Y., Zhang, J. & Wang, P. Aza[5]helicene-derived semiconducting polymers for improved performance in perovskite solar cells: exploring energetic and morphological influences. Angew. Chem. 136, e202401605 (2024).
Awartani, O. et al. Correlating stiffness, ductility, and morphology of polymer:fullerene films for solar cell applications. Adv. Energy Mater. 3, 399–406 (2013).
Li, M., Xiang, K., Shen, Q. & Zhang, L. in Ceramics for Environmental and Energy Applications II: Ceramic Transactions Vol. 246 (eds Dogan, F. et al.) 57–64 (Wiley, 2014); https://doi.org/10.1002/9781118771327.ch6
Mashreghi, A. Determining the volume thermal expansion coefficient of TiO2 nanoparticle by molecular dynamics simulation. Comput. Mater. Sci. 62, 60–64 (2012).
Fan, S. H., Hou, H. J. & Guo, H. L. DFT study of elastic and thermodynamic properties of solar material Cu2ZnSnS4. J. Ovonic Res. 20, 601–615 (2024).
Zhao, H., Prine, N., Kundu, S., Ma, G. & Gu, X. Effect of thermal stress on morphology in high-performance organic photovoltaic blends. JACS Au 4, 4334–4344 (2024).
Moulton, J. & Smith, P. Electrical and mechanical properties of oriented poly(3-alkylthiophenes): 2. Effect of side-chain length. Polymer 33, 2340–2347 (1992).
Afsari, M., Boochani, A. & Hantezadeh, M. Electronic, optical and elastic properties of cubic perovskite CsPbI3: using first principles study. Optik 127, 11433–11443 (2016).
Song, W. et al. Entangled structure morphology by polymer guest enabling mechanically robust organic solar cells with efficiencies of over 16.5%. Matter 5, 1877–1889 (2022).
Sun, S. et al. Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. ChemSusChem 10, 3740–3745 (2017).
Ko, U.-H. et al. First-principles study on the elastic, electronic and optical properties of all-inorganic halide perovskite solid solutions of CsPb(Br1−xClx)3 within the virtual crystal approximation. RSC Adv. 12, 9755–9762 (2022).
Somiya, S. et al. (eds) Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties 2nd edn (Elsevier, 2013).
Vogel, W. High-temperature structure of C60: an in situ X-ray diffraction study. Appl. Phys. A 62, 295–301 (1996).
Gao, Q. et al. Improved mechanical properties of SnO2:F thin film by structural modification. Ceram. Int. 40, 2557–2564 (2014).
Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).
Li, J. et al. Mechanical properties of single crystal organic–inorganic hybrid perovskite MAPbX3 (MA = CH3NH3, X = Cl, Br, I). Coatings 13, 854 (2023).
Landolt, H. & Börnstein, R. Numerical Data and Functional Relationships in Science and Technology, Vol. 44E (Springer, 2012).
Rodová, M., Brožek, J., Knížek, K. & Nitsch, K. Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003).
Brandrup, J. et al. (eds) Polymer Handbook 4th edn (Wiley, 1999).
Adachi, S. Properties of Group-IV, III-V and II-VI Semiconductors (Wiley, 2005).
Lin, Y.-C. et al. Residual stress in CIGS thin film solar cells on polyimide: simulation and experiments. J. Mater. Sci. Mater. Electron. 25, 461–465 (2014).
Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012).
Dai, Z. et al. The mechanical behavior of metal-halide perovskites: elasticity, plasticity, fracture, and creep. Scr. Mater. 223, 115064 (2023).
Liu, J. et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48, 585–591 (2015).
Kuhn, M. et al. Thermal expansion behavior of PM6 studied using in situ wide-angle X-ray scattering. Adv. Funct. Mater. 35, 2509532 (2025).
Cverna, F. Thermal Properties of Metals (ASM International, 2002).
Jaglarz, J., Nosidlak, N. & Wolska, N. Thermo-optical properties of conducted polythiophene polymer films used in electroluminescent devices. Opt. Quantum Electron. 48, 392 (2016).
Yang, W., Zhong, D., Shi, M., Qu, S. & Chen, H. Toward highly thermal stable perovskite solar cells by rational design of interfacial layer. iScience 22, 534–543 (2019).
Music, D. & Elalfy, L. Tuneable thermal expansion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. J. Phys. Condens. Matter 31, 125101 (2019).
Nasr Saleh, M. & Lubineau, G. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: a micro-mechanical investigation. Sol. Energy Mater. Sol. Cells 130, 199–207 (2014).
Yamamoto, N., Makino, H. & Yamamoto, T. Young’s modulus and coefficient of linear thermal expansion of ZnO conductive and transparent ultra-thin films. Adv. Mater. Sci. Eng. https://doi.org/10.1155/2011/136127 (2011).
Ottermann, C. R., Kuschnereit, R., Anderson, O., Hess, P. & Bange, K. Young’s modulus and density of thin TiO2 films produced by different methods. MRS Online Proc. Libr. 436, 251–256 (1996).
Wang, C. et al. Anisotropic mechanical properties of α-MoO3 nanosheets. Nanoscale 16, 4140–4147 (2024).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Chhajlany, S. C. & Malnev, V. N. Bound states of anharmonic potentials. Phys. Rev. A 42, 3111–3114 (1990).
Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 28, 3384–3392 (1972).
Dos Reis, R. et al. Determination of the structural phase and octahedral rotation angle in halide perovskites. Appl. Phys. Lett. 112, 071901 (2018).
Zhang, L. et al. Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing. Nat. Commun. 15, 5484 (2024).
Morse, P. M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929).
Acknowledgements
J.A.S. is grateful to the many researchers who provided their original data used in this work, and for the productive discussions had with C. Verdi, D. Chernyshov and S. M. J. Rogge. This work was supported by the Australian Research Council (DE230100173).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Energy thanks Guixiang Li and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Source Data Fig. 1
Survey data of thermal expansion and Young’s modulus values of different solar cell-related materials.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Steele, J.A. Atomistic origins of anharmonic lattice dynamics and thermal expansion in perovskite photovoltaics. Nat Energy (2026). https://doi.org/10.1038/s41560-025-01938-y
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41560-025-01938-y


