Abstract
People can identify the number of objects in sets of four or fewer items with near-perfect accuracy but exhibit linearly increasing error for larger sets. Some researchers have taken this discontinuity as evidence of two distinct representational systems. Here, we present a mathematical derivation showing that this behaviour is an optimal representation of cardinalities under a limited informational capacity, indicating that this behaviour can emerge from a single system. Our derivation predicts how the amount of information accessible to viewers should influence the perception of quantity for both large and small sets. In a series of four preregistered experiments (Nā=ā100 each), we varied the amount of information accessible to participants in number estimation. We find tight alignment between the model and human performance for both small and large quantities, implicating efficient representation as the common origin behind key phenomena of human and animal numerical cognition.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Ā 30Ā days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The anonymized data from the experiments have been posted at the Open Science Foundation at https://osf.io/svcy5/.
Code availability
The code for the model can be found at https://github.com/samcheyette/info_theory_number.
References
Jevons, W. S. The power of numerical discrimination. Nature 3, 281ā282 (1871).
Mandler, G. & Shebo, B. J. Subitizing: an analysis of its component processes. J. Exp. Psychol. Gen. 111, 1ā22 (1982).
Revkin, S. K., Piazza, M., Izard, V., Cohen, L. & Dehaene, S. Does subitizing reflect numerical estimation? Psychol. Sci. 19, 607ā614 (2008).
Feigenson, L., Dehaene, S. & Spelke, E. Core systems of number. Trends Cogn. Sci. 8, 307ā314 (2004).
Dehaene, S. The Number Sense: How the Mind Creates Mathematics (Oxford Univ. Press, 2011).
Kaufman, E. L., Lord, M. W., Reese, T. W. & Volkmann, J. The discrimination of visual number. Am. J. Psychol. 62, 498ā525 (1949).
Pica, P., Lemer, C., Izard, V. & Dehaene, S. Exact and approximate arithmetic in an Amazonian indigene group. Science 306, 499ā503 (2004).
Burr, D. C., Turi, M. & Anobile, G. Subitizing but not estimation of numerosity requires attentional resources. J. Vis. 10, 20 (2010).
Gallistel, C. R. & Gelman, R. Preverbal and verbal counting and computation. Cognition 44, 43ā74 (1992).
Xu, F. & Spelke, E. S. Large number discrimination in 6-month-old infants. Cognition 74, B1āB11 (2000).
Platt, J. R. & Johnson, D. M. Localization of position within a homogeneous behavior chain: effects of error contingencies. Learn. Motiv. 2, 386ā414 (1971).
Meck, W. H. & Church, R. M. A mode control model of counting and timing processes. J. Exp. Psychol. Anim. Behav. Process. 9, 320ā334 (1983).
Gallistel, C. R. The Organization of Learning (MIT Press, 1990).
Cantlon, J. F. & Brannon, E. M. Basic math in monkeys and college students. PLoS Biol. 5, e328 (2007).
Cantlon, J. F. Math, monkeys, and the developing brain. Proc. Natl Acad. Sci. USA 109, 10725ā10732 (2012).
Yang, T.-I. & Chiao, C.-C. Number sense and state-dependent valuation in cuttlefish. Proc. R. Soc. B 283, 20161379 (2016).
Uller, C., Jaeger, R., Guidry, G. & Martin, C. Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim. Cogn. 6, 105ā112 (2003).
Piantadosi, S. T. & Cantlon, J. F. True numerical cognition in the wild. Psychol. Sci. 28, 462ā469 (2017).
McComb, K., Packer, C. & Pusey, A. Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim. Behav. 47, 379ā387 (1994).
Sims, C. R. Rateādistortion theory and human perception. Cognition 152, 181ā198 (2016).
Sims, C. R., Jacobs, R. A. & Knill, D. C. An ideal observer analysis of visual working memory. Psychol. Rev. 119, 807ā830 (2012).
Brady, T. F., Stƶrmer, V. S. & Alvarez, G. A. Working memory is not fixed-capacity: more active storage capacity for real-world objects than for simple stimuli. Proc. Natl Acad. Sci. USA 113, 7459ā7464 (2016).
Brady, T. F. & Tenenbaum, J. B. A probabilistic model of visual working memory: incorporating higher order regularities into working memory capacity estimates. Psychol. Rev. 120, 85ā109 (2013).
Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607ā609 (1996).
Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193ā1216 (2001).
Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481ā487 (2004).
Geisler, W. S. Contributions of ideal observer theory to vision research. Vis. Res. 51, 771ā781 (2011).
Choo, H. & Franconeri, S. Enumeration of small collections violates Weberās law. Psychon. Bull. Rev. 21, 93ā99 (2014).
Izard, V. & Dehaene, S. Calibrating the mental number line. Cognition 106, 1221ā1247 (2008).
Cheyette, S. J. & Piantadosi, S. T. A primarily serial, foveal accumulator underlies approximate numerical estimation. Proc. Natl Acad. Sci. USA 116, 17729ā17734 (2019).
Inglis, M. & Gilmore, C. Sampling from the mental number line: how are approximate number system representations formed? Cognition 129, 63ā69 (2013).
Melcher, D. & Piazza, M. The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS ONE 6, e29296 (2011).
Nieder, A. & Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 32, 185ā208 (2009).
Anderson, J. R. & Schooler, L. J. Reflections of the environment in memory. Psychol. Sci. 2, 396ā408 (1991).
Dehaene, S. & Mehler, J. Cross-linguistic regularities in the frequency of number words. Cognition 43, 1ā29 (1992).
Piantadosi, S. T. A rational analysis of the approximate number system. Psychon. Bull. Rev. 23, 877ā886 (2016).
Stone, J. V. Principles of Neural Information Theory (Sebtel, 2018).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379ā423 (1948).
Gallistel, C. R. Finding numbers in the brain. Phil. Trans. R. Soc. B 373, 20170119 (2018).
Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 2012).
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).
Barnard, A. M. et al. Inherently analog quantity representations in olive baboons (Papio anubis). Front. Psychol. 4, 253 (2013).
Gallistel, C. & Gelman, R. in Memories, Thoughts, and Emotions: Essays in Honor of George Mandler (eds Kessen, W., Ortony, A. & Kraik, F.) 65ā81 (Psychology Press, 1991).
Piazza, M., Fumarola, A., Chinello, A. & Melcher, D. Subitizing reflects visuo-spatial object individuation capacity. Cognition 121, 147ā153 (2011).
Trick, L. M. & Pylyshyn, Z. W. Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychol. Rev. 101, 80ā102 (1994).
Anderson, D. & Burnham, K. Model Selection and Multi-model Inference 2nd edn (Springer, 2004).
Atkinson, J., Campbell, F. W. & Francis, M. R. The magic number 4ā±ā0: a new look at visual numerosity judgements. Perception 5, 327ā334 (1976).
Ginsburg, N. Effect of item arrangement on perceived numerosity: randomness vs regularity. Percept. Mot. Skills 43, 663ā668 (1976).
DeWind, N. K., Bonner, M. F. & Brannon, E. M. Similarly oriented objects appear more numerous. J. Vis. 20, 4 (2020).
Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279ā281 (1997).
Awh, E., Barton, B. & Vogel, E. K. Visual working memory represents a fixed number of items regardless of complexity. Psychol. Sci. 18, 622ā628 (2007).
Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working memory. Nat. Neurosci. 17, 347ā356 (2014).
Keshvari, S., Van den Berg, R. & Ma, W. J. No evidence for an item limit in change detection. PLoS Comput. Biol. 9, e1002927 (2013).
Van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W. J. Variability in encoding precision accounts for visual short-term memory limitations. Proc. Natl Acad. Sci. USA 109, 8780ā8785 (2012).
Starr, A., Libertus, M. E. & Brannon, E. M. Infants show ratio-dependent number discrimination regardless of set size. Infancy 18, 927ā941 (2013).
Agrillo, C., Petrazzini, M. E. M. & Bisazza, A. Numerical acuity of fish is improved in the presence of moving targets, but only in the subitizing range. Anim. Cogn. 17, 307ā316 (2014).
Petrazzini, M. E. M., Mantese, F. & Prato-Previde, E. Food quantity discrimination in puppies (Canis lupus familiaris). Anim. Cogn. 23, 703ā710 (2020).
Elmore, L. C. et al. Visual short-term memory compared in rhesus monkeys and humans. Curr. Biol. 21, 975ā979 (2011).
Tomonaga, M. & Matsuzawa, T. Enumeration of briefly presented items by the chimpanzee (Pan troglodytes) and humans (Homo sapiens). Anim. Learn. Behav. 30, 143ā157 (2002).
Inoue, S. & Matsuzawa, T. Working memory of numerals in chimpanzees. Curr. Biol. 17, R1004āR1005 (2007).
Green, C. S. & Bavelier, D. Action video game modifies visual selective attention. Nature 423, 534ā537 (2003).
Green, C. S. & Bavelier, D. Enumeration versus multiple object tracking: the case of action video game players. Cognition 101, 217ā245 (2006).
Alexander, R. M. The gaits of bipedal and quadrupedal animals. Int. J. Rob. Res. 3, 49ā59 (1984).
Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7, 217ā229 (2015).
Acknowledgements
We thank F. Callaway, J. Cantlon and E. Gibson for providing feedback on an earlier draft of this paper. This work was supported by grants no. 1760874 and no. 2000759 from the National Science Foundation, Division of Research on Learning (to S.T.P.) and award no. 1R01HD085996 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) at the National Institutes of Health (to S.T.P. and J. Cantlon). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
S.J.C. and S.T.P. derived and implemented the model. S.J.C. and S.T.P. designed the experiment. S.J.C. implemented the experiment and analysed the data. S.J.C. and S.T.P. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Primary handling editor: Aisha Bradshaw.
Publisherās note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2, Supplementary Table 1, Supplementary Results and Supplementary References.
Rights and permissions
About this article
Cite this article
Cheyette, S.J., Piantadosi, S.T. A unified account of numerosity perception. Nat Hum Behav 4, 1265ā1272 (2020). https://doi.org/10.1038/s41562-020-00946-0
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41562-020-00946-0
This article is cited by
-
Are three zebras more than three frogs: examining conceptual and physical congruency in numerosity judgements of familiar objects
Psychological Research (2025)
-
Uniquely human intelligence arose from expanded information capacity
Nature Reviews Psychology (2024)
-
A number sense as an emergent property of the manipulating brain
Scientific Reports (2024)
-
Linguacultural and Cognitive Peculiarities of Linguistic Universals
Journal of Psycholinguistic Research (2024)
-
A human-like artificial intelligence for mathematics
Mind & Society (2024)


