Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unified account of numerosity perception

Abstract

People can identify the number of objects in sets of four or fewer items with near-perfect accuracy but exhibit linearly increasing error for larger sets. Some researchers have taken this discontinuity as evidence of two distinct representational systems. Here, we present a mathematical derivation showing that this behaviour is an optimal representation of cardinalities under a limited informational capacity, indicating that this behaviour can emerge from a single system. Our derivation predicts how the amount of information accessible to viewers should influence the perception of quantity for both large and small sets. In a series of four preregistered experiments (N = 100 each), we varied the amount of information accessible to participants in number estimation. We find tight alignment between the model and human performance for both small and large quantities, implicating efficient representation as the common origin behind key phenomena of human and animal numerical cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Response distributions for two possible forms of Q, with probabilities of estimates for numerosities 1–6.
Fig. 2: The model’s posterior probability over numerosities, when shown 1 to 15 objects.
Fig. 3: Model posterior predictive fits including participant effects and human data for absolute estimation error, mean estimates and the shape of the response distributions.
Fig. 4: Mean estimates and absolute error of the estimates as a function of number shown in the three replication experiments.

Similar content being viewed by others

Data availability

The anonymized data from the experiments have been posted at the Open Science Foundation at https://osf.io/svcy5/.

Code availability

The code for the model can be found at https://github.com/samcheyette/info_theory_number.

References

  1. Jevons, W. S. The power of numerical discrimination. Nature 3, 281–282 (1871).

    Google ScholarĀ 

  2. Mandler, G. & Shebo, B. J. Subitizing: an analysis of its component processes. J. Exp. Psychol. Gen. 111, 1–22 (1982).

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Revkin, S. K., Piazza, M., Izard, V., Cohen, L. & Dehaene, S. Does subitizing reflect numerical estimation? Psychol. Sci. 19, 607–614 (2008).

    PubMedĀ  Google ScholarĀ 

  4. Feigenson, L., Dehaene, S. & Spelke, E. Core systems of number. Trends Cogn. Sci. 8, 307–314 (2004).

    PubMedĀ  Google ScholarĀ 

  5. Dehaene, S. The Number Sense: How the Mind Creates Mathematics (Oxford Univ. Press, 2011).

  6. Kaufman, E. L., Lord, M. W., Reese, T. W. & Volkmann, J. The discrimination of visual number. Am. J. Psychol. 62, 498–525 (1949).

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Pica, P., Lemer, C., Izard, V. & Dehaene, S. Exact and approximate arithmetic in an Amazonian indigene group. Science 306, 499–503 (2004).

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Burr, D. C., Turi, M. & Anobile, G. Subitizing but not estimation of numerosity requires attentional resources. J. Vis. 10, 20 (2010).

    PubMedĀ  Google ScholarĀ 

  9. Gallistel, C. R. & Gelman, R. Preverbal and verbal counting and computation. Cognition 44, 43–74 (1992).

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Xu, F. & Spelke, E. S. Large number discrimination in 6-month-old infants. Cognition 74, B1–B11 (2000).

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Platt, J. R. & Johnson, D. M. Localization of position within a homogeneous behavior chain: effects of error contingencies. Learn. Motiv. 2, 386–414 (1971).

    Google ScholarĀ 

  12. Meck, W. H. & Church, R. M. A mode control model of counting and timing processes. J. Exp. Psychol. Anim. Behav. Process. 9, 320–334 (1983).

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Gallistel, C. R. The Organization of Learning (MIT Press, 1990).

  14. Cantlon, J. F. & Brannon, E. M. Basic math in monkeys and college students. PLoS Biol. 5, e328 (2007).

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Cantlon, J. F. Math, monkeys, and the developing brain. Proc. Natl Acad. Sci. USA 109, 10725–10732 (2012).

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Yang, T.-I. & Chiao, C.-C. Number sense and state-dependent valuation in cuttlefish. Proc. R. Soc. B 283, 20161379 (2016).

    PubMedĀ  Google ScholarĀ 

  17. Uller, C., Jaeger, R., Guidry, G. & Martin, C. Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim. Cogn. 6, 105–112 (2003).

    PubMedĀ  Google ScholarĀ 

  18. Piantadosi, S. T. & Cantlon, J. F. True numerical cognition in the wild. Psychol. Sci. 28, 462–469 (2017).

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. McComb, K., Packer, C. & Pusey, A. Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim. Behav. 47, 379–387 (1994).

    Google ScholarĀ 

  20. Sims, C. R. Rate–distortion theory and human perception. Cognition 152, 181–198 (2016).

    PubMedĀ  Google ScholarĀ 

  21. Sims, C. R., Jacobs, R. A. & Knill, D. C. An ideal observer analysis of visual working memory. Psychol. Rev. 119, 807–830 (2012).

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Brady, T. F., Stƶrmer, V. S. & Alvarez, G. A. Working memory is not fixed-capacity: more active storage capacity for real-world objects than for simple stimuli. Proc. Natl Acad. Sci. USA 113, 7459–7464 (2016).

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Brady, T. F. & Tenenbaum, J. B. A probabilistic model of visual working memory: incorporating higher order regularities into working memory capacity estimates. Psychol. Rev. 120, 85–109 (2013).

    PubMedĀ  Google ScholarĀ 

  24. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Geisler, W. S. Contributions of ideal observer theory to vision research. Vis. Res. 51, 771–781 (2011).

    PubMedĀ  Google ScholarĀ 

  28. Choo, H. & Franconeri, S. Enumeration of small collections violates Weber’s law. Psychon. Bull. Rev. 21, 93–99 (2014).

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Izard, V. & Dehaene, S. Calibrating the mental number line. Cognition 106, 1221–1247 (2008).

    PubMedĀ  Google ScholarĀ 

  30. Cheyette, S. J. & Piantadosi, S. T. A primarily serial, foveal accumulator underlies approximate numerical estimation. Proc. Natl Acad. Sci. USA 116, 17729–17734 (2019).

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Inglis, M. & Gilmore, C. Sampling from the mental number line: how are approximate number system representations formed? Cognition 129, 63–69 (2013).

    PubMedĀ  Google ScholarĀ 

  32. Melcher, D. & Piazza, M. The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS ONE 6, e29296 (2011).

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Nieder, A. & Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 32, 185–208 (2009).

    CASĀ  PubMedĀ  Google ScholarĀ 

  34. Anderson, J. R. & Schooler, L. J. Reflections of the environment in memory. Psychol. Sci. 2, 396–408 (1991).

    Google ScholarĀ 

  35. Dehaene, S. & Mehler, J. Cross-linguistic regularities in the frequency of number words. Cognition 43, 1–29 (1992).

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Piantadosi, S. T. A rational analysis of the approximate number system. Psychon. Bull. Rev. 23, 877–886 (2016).

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Stone, J. V. Principles of Neural Information Theory (Sebtel, 2018).

  38. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Google ScholarĀ 

  39. Gallistel, C. R. Finding numbers in the brain. Phil. Trans. R. Soc. B 373, 20170119 (2018).

    Google ScholarĀ 

  40. Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 2012).

  41. Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).

  42. Barnard, A. M. et al. Inherently analog quantity representations in olive baboons (Papio anubis). Front. Psychol. 4, 253 (2013).

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Gallistel, C. & Gelman, R. in Memories, Thoughts, and Emotions: Essays in Honor of George Mandler (eds Kessen, W., Ortony, A. & Kraik, F.) 65–81 (Psychology Press, 1991).

  44. Piazza, M., Fumarola, A., Chinello, A. & Melcher, D. Subitizing reflects visuo-spatial object individuation capacity. Cognition 121, 147–153 (2011).

    PubMedĀ  Google ScholarĀ 

  45. Trick, L. M. & Pylyshyn, Z. W. Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychol. Rev. 101, 80–102 (1994).

    CASĀ  PubMedĀ  Google ScholarĀ 

  46. Anderson, D. & Burnham, K. Model Selection and Multi-model Inference 2nd edn (Springer, 2004).

  47. Atkinson, J., Campbell, F. W. & Francis, M. R. The magic number 4 ± 0: a new look at visual numerosity judgements. Perception 5, 327–334 (1976).

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Ginsburg, N. Effect of item arrangement on perceived numerosity: randomness vs regularity. Percept. Mot. Skills 43, 663–668 (1976).

    Google ScholarĀ 

  49. DeWind, N. K., Bonner, M. F. & Brannon, E. M. Similarly oriented objects appear more numerous. J. Vis. 20, 4 (2020).

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    CASĀ  PubMedĀ  Google ScholarĀ 

  51. Awh, E., Barton, B. & Vogel, E. K. Visual working memory represents a fixed number of items regardless of complexity. Psychol. Sci. 18, 622–628 (2007).

    PubMedĀ  Google ScholarĀ 

  52. Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working memory. Nat. Neurosci. 17, 347–356 (2014).

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Keshvari, S., Van den Berg, R. & Ma, W. J. No evidence for an item limit in change detection. PLoS Comput. Biol. 9, e1002927 (2013).

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W. J. Variability in encoding precision accounts for visual short-term memory limitations. Proc. Natl Acad. Sci. USA 109, 8780–8785 (2012).

    PubMedĀ  Google ScholarĀ 

  55. Starr, A., Libertus, M. E. & Brannon, E. M. Infants show ratio-dependent number discrimination regardless of set size. Infancy 18, 927–941 (2013).

    Google ScholarĀ 

  56. Agrillo, C., Petrazzini, M. E. M. & Bisazza, A. Numerical acuity of fish is improved in the presence of moving targets, but only in the subitizing range. Anim. Cogn. 17, 307–316 (2014).

    PubMedĀ  Google ScholarĀ 

  57. Petrazzini, M. E. M., Mantese, F. & Prato-Previde, E. Food quantity discrimination in puppies (Canis lupus familiaris). Anim. Cogn. 23, 703–710 (2020).

    Google ScholarĀ 

  58. Elmore, L. C. et al. Visual short-term memory compared in rhesus monkeys and humans. Curr. Biol. 21, 975–979 (2011).

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Tomonaga, M. & Matsuzawa, T. Enumeration of briefly presented items by the chimpanzee (Pan troglodytes) and humans (Homo sapiens). Anim. Learn. Behav. 30, 143–157 (2002).

    PubMedĀ  Google ScholarĀ 

  60. Inoue, S. & Matsuzawa, T. Working memory of numerals in chimpanzees. Curr. Biol. 17, R1004–R1005 (2007).

    CASĀ  PubMedĀ  Google ScholarĀ 

  61. Green, C. S. & Bavelier, D. Action video game modifies visual selective attention. Nature 423, 534–537 (2003).

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Green, C. S. & Bavelier, D. Enumeration versus multiple object tracking: the case of action video game players. Cognition 101, 217–245 (2006).

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Alexander, R. M. The gaits of bipedal and quadrupedal animals. Int. J. Rob. Res. 3, 49–59 (1984).

    Google ScholarĀ 

  64. Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7, 217–229 (2015).

    PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank F. Callaway, J. Cantlon and E. Gibson for providing feedback on an earlier draft of this paper. This work was supported by grants no. 1760874 and no. 2000759 from the National Science Foundation, Division of Research on Learning (to S.T.P.) and award no. 1R01HD085996 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) at the National Institutes of Health (to S.T.P. and J. Cantlon). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.J.C. and S.T.P. derived and implemented the model. S.J.C. and S.T.P. designed the experiment. S.J.C. implemented the experiment and analysed the data. S.J.C. and S.T.P. wrote the paper.

Corresponding author

Correspondence to Samuel J. Cheyette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Aisha Bradshaw.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Supplementary Table 1, Supplementary Results and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheyette, S.J., Piantadosi, S.T. A unified account of numerosity perception. Nat Hum Behav 4, 1265–1272 (2020). https://doi.org/10.1038/s41562-020-00946-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-020-00946-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing