Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Einstein effect provides global evidence for scientific source credibility effects and the influence of religiosity

Abstract

People tend to evaluate information from reliable sources more favourably, but it is unclear exactly how perceivers’ worldviews interact with this source credibility effect. In a large and diverse cross-cultural sample (N = 10,195 from 24 countries), we presented participants with obscure, meaningless statements attributed to either a spiritual guru or a scientist. We found a robust global source credibility effect for scientific authorities, which we dub ‘the Einstein effect’: across all 24 countries and all levels of religiosity, scientists held greater authority than spiritual gurus. In addition, individual religiosity predicted a weaker relative preference for the statement from the scientist compared with the spiritual guru, and was more strongly associated with credibility judgements for the guru than the scientist. Independent data on explicit trust ratings across 143 countries mirrored our experimental findings. These findings suggest that irrespective of one’s religious worldview, across cultures science is a powerful and universal heuristic that signals the reliability of information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed relation between religiosity and credibility ratings per source for each country.
Fig. 2: Summary of the multilevel-model (unconstrained) estimates per country and predicted overall effects.
Fig. 3: Multilevel-model (unconstrained) estimates for the exploratory analyses.
Fig. 4: Multilevel-model (unconstrained) estimates and predicted overall effects for explicit trust ratings.

Similar content being viewed by others

Data availability

All data collected as part of the experimental study, as well as preprocessed secondary data on explicit trust are provided at https://doi.org/10.17605/osf.io/qsyvw (https://osf.io/qsyvw/). Raw data on the explicit trust ratings are available at https://wellcome.org/reports/wellcome-global-monitor/2018.

Code availability

Analysis code for all main results and supplementary analyses is available at https://osf.io/qsyvw/.

References

  1. The White House Press Briefing. Remarks by President Trump in Press Briefing (Statements & Releases, 2020); https://trumpwhitehouse.archives.gov/briefings-statements/remarks-president-trump-press-briefing-092420/

  2. Farr, C. Stanford Medical faculty lambaste former colleague and Trump coronavirus advisor Dr. Scott Atlas. (CNBC, 2020); https://www.cnbc.com/2020/09/10/stanford-medical-faculty-lambaste-former-colleague-and-trump-coronavirus-advisor-dr-scott-atlas.html

  3. Brinol, P. & Petty, R. E. Source factors in persuasion: A self-validation approach. Eur. Rev. Soc. Psychol. 20, 49–96 (2009).

    Article  Google Scholar 

  4. Pornpitakpan, C. The persuasiveness of source credibility: A critical review of five decades’ evidence. J. Appl. Soc. Psychol. 34, 243–281 (2004).

    Article  Google Scholar 

  5. McGinnies, E. & Ward, C. D. Better liked than right: Trustworthiness and expertise as factors in credibility. Pers. Soc. Psychol. Bull. 6, 467–472 (1980).

    Article  Google Scholar 

  6. Harris, A. J., Hahn, U., Madsen, J. K. & Hsu, A. S. The appeal to expert opinion: Quantitative support for a Bayesian network approach. Cogn. Sci. 40, 1496–1533 (2016).

    Article  PubMed  Google Scholar 

  7. Smith, C. T., De Houwer, J. & Nosek, B. A. Consider the source: Persuasion of implicit evaluations is moderated by source credibility. Pers. Soc. Psychol. Bull. 39, 193–205 (2013).

    Article  PubMed  Google Scholar 

  8. Sperber, D. et al. Epistemic viligance. Mind Lang. 25, 359–393 (2010).

    Article  Google Scholar 

  9. Chaiken, S. & Maheswaran, D. Heuristic processing can bias systematic processing: Effects of source credibility, argument ambiguity, and task importance on attitude judgment. J. Pers. Soc. Psychol. 66, 460–473 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Petty, R. E. & Cacioppo, J. T. Communication and Persuasion: Central and Peripheral Routes to Attitude Change 1–24 (Springer, 1986).

  11. Clément, F., Koenig, M. & Harris, P. The ontogenesis of trust. Mind Lang. 19, 360—379 (2004).

    Article  Google Scholar 

  12. Jaswal, V. K. & Neely, L. A. Adults don’t always know best: Preschoolers use past reliability over age when learning new words. Psychol. Sci. 17, 757–758 (2006).

    Article  PubMed  Google Scholar 

  13. Taylor, M., Cartwright, B. S. & Bowden, T. Perspective taking and theory of mind: Do children predict interpretive diversity as a function of differences in observers’ knowledge? Child Dev. 62, 1334–1351 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Harris, P. L., Koenig, M. A., Corriveau, K. H. & Jaswal, V. K. Cognitive foundations of learning from testimony. Annu. Rev. Psychol. 69, 251–273 (2018).

    Article  PubMed  Google Scholar 

  15. Birch, S. A. J., Akmal, N. & Frampton, K. L. Two-year-olds are vigilant of others’ non-verbal cues to credibility. Dev. Sci. 13, 363–369 (2010).

    Article  PubMed  Google Scholar 

  16. Chudek, M., Heller, S., Birch, S. & Henrich, J. Prestige-biased cultural learning: Bystander’s differential attention to potential models influences children’s learning. Evol. Hum. Behav. 33, 46–56 (2012).

    Article  Google Scholar 

  17. Mascaro, O. & Sperber, D. The moral, epistemic, and mindreading components of children’s vigilance towards deception. Cognition 112, 367–380 (2009).

    Article  PubMed  Google Scholar 

  18. Johnston, A. M., Mills, C. M. & Landrum, A. R. How do children weigh competence and benevolence when deciding whom to trust? Cognition 144, 76–90 (2015).

    Article  PubMed  Google Scholar 

  19. Fiske, S. T. & Dupree, C. Gaining trust as well as respect in communicating to motivated audiences about science topics. Proc. Natl Acad. Sci. USA 111, 13593–13597 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bloom, P. & Weisberg, D. S. Childhood origins of adult resistance to science. Science 316, 996–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Harris, P. L. Trusting What You’re Told: How Children Learn from Others (Harvard Univ. Press, 2012).

  22. Mercier, H. Not Born Yesterday: The Science of Who We Trust and What We Believe (Princeton Univ. Press, 2020).

    Book  Google Scholar 

  23. Hahn, U., Harris, A. J. L. & Corner, A. Public reception of climate science: Coherence, reliability, and independence. Top. Cogn. Sci. 8, 180–195 (2016).

    Article  PubMed  Google Scholar 

  24. Henrich, J. & Gil-White, F. J. The evolution of prestige: Freely conferred deference as a mechanism for enhancing the benefits of cultural transmission. Evol. Hum. Behav. 22, 165–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Henrich, J. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton Univ. Press, 2015).

    Book  Google Scholar 

  26. Johnson, D. D. & Fowler, J. H. The evolution of overconfidence. Nature 477, 317–320 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. JohnsonD. D. Strategic Instincts: The Adaptive Advantages of Cognitive Biases in International Politics Vol. 2 (Princeton Univ. Press, 2020).

    Book  Google Scholar 

  28. Sperber, D. Intuitive and reflective beliefs. Mind Lang. 12, 67–83 (1997).

    Article  Google Scholar 

  29. Sperber, D. The Guru effect. Rev. Philos. Psychol. 1, 583–592 (2010).

    Article  Google Scholar 

  30. Funk, C. Key Findings About Americans’ Confidence in Science and Their Views on Scientists’ Role in Society (Pew Research Center, 2020); https://pewrsr.ch/2Hgq31S

  31. Krause, N. M., Brossard, D., Scheufele, D. A., Xenos, M. A. & Franke, K. Trends—Americans’ trust in science and scientists. Public Opin. Q. 83, 817–836 (2019).

    Google Scholar 

  32. Reynolds, T. W., Bostrom, A., Read, D. & Morgan, M. G. Now what do people know about global climate change? Survey studies of educated laypeople. Risk Anal. 30, 1520–1538 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Weber, E. U. & Stern, P. C. Public understanding of climate change in the United States. Am. Psychol. 66, 315–328 (2011).

    Article  PubMed  Google Scholar 

  34. McCloskey, M., Washburn, A. & Felch, L. Intuitive physics: The straight-down belief and its origin. J. Exp. Psychol. Learn. Mem. Cogn. 9, 636–649 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Mercier, H. The argumentative theory: Predictions and empirical evidence. Trends Cogn. Sci. 20, 689–700 (2016).

    Article  PubMed  Google Scholar 

  36. Evans, A. M., Sleegers, W. & Mlakar, Ž. Individual differences in receptivity to scientific bullshit. Judgm. Decis. Mak. 15, 401–412 (2020).

    Google Scholar 

  37. Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E. & Gray, J. R. The seductive allure of neuroscience explanations. J. Cogn. Neurosci. 20, 470–477 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fernandez-Duque, D., Evans, J., Christian, C. & Hodges, S. D. Superfluous neuroscience information makes explanations of psychological phenomena more appealing. J. Cogn. Neurosci. 27, 926–944 (2014).

    Article  PubMed  Google Scholar 

  39. McCabe, D. P. & Castel, A. D. Seeing is believing: The effect of brain images on judgments of scientific reasoning. Cognition 107, 343–352 (2008).

    Article  PubMed  Google Scholar 

  40. Eriksson, K. The nonsense math effect. Judgm. Decis. Mak. 7, 746–749 (2012).

    Google Scholar 

  41. Gruber, D. & Dickerson, J. A. Persuasive images in popular science: Testing judgments of scientific reasoning and credibility. Public Underst. Sci. 21, 938–948 (2012).

    Article  PubMed  Google Scholar 

  42. Michael, R. B., Newman, E. J., Vuorre, M., Cumming, G. & Garry, M. On the (non) persuasive power of a brain image. Psychon. Bull. Rev. 20, 720–725 (2013).

    Article  PubMed  Google Scholar 

  43. Legare, C. H., Evans, E. M., Rosengren, K. S. & Harris, P. L. The coexistence of natural and supernatural explanations across cultures and development. Child Dev. 83, 779–793 (2012).

    Article  PubMed  Google Scholar 

  44. Van Leeuwen, N. Religious credence is not factual belief. Cognition 133, 698–715 (2014).

    Article  PubMed  Google Scholar 

  45. Johnson, K. A., Okun, M. A., Cohen, A. B., Sharp, C. A. & Hook, J. N. Development and validation of the five-factor LAMBI measure of God representations. Psycholog. Relig. Spiritual. 11, 339–349 (2019).

    Article  Google Scholar 

  46. Boyer, P. Religion Explained: The Evolutionary Origins of Religious Thought (Basic Books, 2001).

    Google Scholar 

  47. Friesen, J. P., Campbell, T. H. & Kay, A. C. The psychological advantage of unfalsifiability: The appeal of untestable religious and political ideologies. J. Pers. Soc. Psychol. 108, 515–529 (2015).

    Article  PubMed  Google Scholar 

  48. Liquin, E. G., Metz, S. E. & Lombrozo, T. Science demands explanation, religion tolerates mystery. Cognition 204, 104398 (2020).

    Article  PubMed  Google Scholar 

  49. Mahoney, A. in The Evolution of Religion: Studies, Theories, and Critiques (eds Bulbulia, J. et al.) 161–166 (Collins Foundation Press, 2008).

  50. Irons, W. in The Evolution of Religion: Studies, Theories, and Critiques (eds Bulbulia, J. et al.) 51–57 (Collins Foundation Press, 2008).

  51. Lachapelle, E., Montpetit, É. & Gauvin, J.-P. Public perceptions of expert credibility on policy issues: The role of expert framing and political worldviews - expert framing and political worldviews. Policy Stud. J. 42, 674–697 (2014).

    Article  Google Scholar 

  52. Gauchat, G. The cultural authority of science: Public trust and acceptance of organized science. Public Underst. Sci. 20, 751–770 (2011).

    Article  PubMed  Google Scholar 

  53. Gauchat, G. Politicization of science in the public sphere: A study of public trust in the United States, 1974 to 2010. Am. Sociol. Rev. 77, 167–187 (2012).

    Article  Google Scholar 

  54. Brandt, M. J. & Crawford, J. T. in Advances in Experimental Social Psychology (ed. Gawronski, B.) 1–66 (Academic Press, 2020).

  55. Levy, N. Due deference to denialism: Explaining ordinary people’s rejection of established scientific findings. Synthese 196, 313–327 (2019).

    Article  PubMed  Google Scholar 

  56. Schjoedt, U., Stødkilde-Jørgensen, H., Geertz, A. W., Lund, T. E. & Roepstorff, A. The power of charisma-perceived charisma inhibits the frontal executive network of believers in intercessory prayer. Soc. Cogn. Affect. Neurosci. 6, 119–127 (2011).

    Article  PubMed  Google Scholar 

  57. McPhetres, J. & Zuckerman, M. Religious people endorse different standards of evidence when evaluating religious versus scientific claims. Soc. Psychol. Pers. Sci. 8, 836–842 (2017).

    Article  Google Scholar 

  58. Lobato, E. J. C., Tabatabaeian, S., Fleming, M., Sulzmann, S. & Holbrook, C. Religiosity predicts evidentiary standards. Soc. Psychol. Pers. Sci. 11, 546–551 (2020).

    Article  Google Scholar 

  59. Robinson, C. Cross-cutting messages and political tolerance: An experiment using evangelical protestants. Politi. Behav. 32, 495–515 (2010).

    Article  Google Scholar 

  60. Munro, G. D. & Ditto, P. H. Biased assimilation, attitude polarization, and affect in reactions to stereotype-relevant scientific information. Pers. Soc. Psychol. Bull. 23, 636–653 (1997).

    Article  Google Scholar 

  61. Tversky, A. & Kahneman, D. Judgment under uncertainty: Heuristics and biases. Science 185, 1124–1131 (1974).

    Article  CAS  PubMed  Google Scholar 

  62. Cook, J. & Lewandowsky, S. Rational irrationality: Modeling climate change belief polarization using Bayesian networks. Top. Cogn. Sci. 8, 160–179 (2016).

    Article  PubMed  Google Scholar 

  63. Jern, A., Chang, K.-m. K. & Kemp, C. Belief polarization is not always irrational. Psychol. Rev. 121, 206–224 (2014).

    Article  PubMed  Google Scholar 

  64. Hahn, U., Harris, A. J. L. & Corner, A. Argument content and argument source: An exploration. Informal Log. 29, 337–367 (2009).

    Article  Google Scholar 

  65. Batson, C. D. Rational processing or rationalization? The effect of disconfirming information on a stated religious belief. J. Pers. Soc. Psychol. 32, 176–184 (1975).

    Article  Google Scholar 

  66. Ibrahim, J. G. & Chen, M.-H. Power prior distributions for regression models. Stat. Sci. 15, 46–60 (2000).

    Google Scholar 

  67. Pennycook, G., Cheyne, J. A., Barr, N., Koehler, D. J. & Fugelsang, J. A. On the reception and detection of pseudo-profound bullshit. Judgm. Decis. Mak. 10, 549–563 (2015).

    Google Scholar 

  68. Zinnbauer, B. J. et al. Religion and spirituality: Unfuzzying the fuzzy. J. Sci. Study Relig. 36, 549–564 (1997).

    Article  Google Scholar 

  69. Paloutzian, R. F & Park, C. L. Handbook of the Psychology of Religion and Spirituality (Guilford Press, 2014).

    Google Scholar 

  70. Lindeman, M., van Elk, M., Lipsanen, J., Marin, P. & Schjødt, U. Religious unbelief in three western European countries: Identifying and characterizing unbeliever types using latent class analysis. Int. J. Psychol. Relig. 29, 184–203 (2019).

    Article  Google Scholar 

  71. McClintock, C. H., Lau, E. & Miller, L. Phenotypic dimensions of spirituality: Implications for mental health in China, India, and the United States. Front. Psychol. 7, 1600 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wilson, M. S., Bulbulia, J. & Sibley, C. G. Differences and similarities in religious and paranormal beliefs: A typology of distinct faith signatures. Relig. Brain Behav. 4, 104–126 (2013).

    Article  Google Scholar 

  73. Rice, T. W. Believe it or not: Religious and other paranormal beliefs in the United States. J. Sci. Study Relig. 42, 95–106 (2003).

    Article  Google Scholar 

  74. Wellcome Global Monitor – first wave findings (Wellcome Trust, 2019); https://wellcome.ac.uk/reports/wellcome-global-monitor/2018

  75. van Doorn, J., Ly, A., Marsman, M. & Wagenmakers, E.-J. Bayesian rank-based hypothesis testing for the rank sum test, the signed rank test, and Spearman’s ρ. J. Appl. Stat. 47, 2984–3006 (2020).

    Article  Google Scholar 

  76. Morey, R. D. & Rouder, J. N. BayesFactor: Computation of Bayes factors for common designs. R package version 0.9.12-4.3 https://CRAN.R-project.org/package=BayesFactor (2021).

  77. Mummolo, J. & Peterson, E. Demand effects in survey experiments: An empirical assessment. Am. Politi. Sci. Rev. 113, 517–529 (2019).

    Article  Google Scholar 

  78. Gervais, W. M. et al. Analytic atheism: A cross-culturally weak and fickle phenomenon? Judgm. Decis. Mak. 13, 268–274 (2018).

    Google Scholar 

  79. Stavrova, O. Religion, self-rated health, and mortality: Whether religiosity delays death depends on the cultural context. Soc. Psychol. Pers. Sci. 6, 911–922 (2015).

    Article  Google Scholar 

  80. Wave 6 Official Aggregate v. 20150418 (World Values Survey, 2010); https://worldvaluessurvey.org

  81. Mitkidis, P., Xygalatas, D., Buttrick, N., Porubanova, M. & Lienard, P. The impact of authority on cooperation: A cross-cultural examination of systemic trust. Adapt. Hum. Behav. Physiol. 1, 341–357 (2015).

    Article  Google Scholar 

  82. Inglehart, R. Mapping global values. Comp. Sociol. 5, 115–136 (2006).

    Article  Google Scholar 

  83. Singelis, T. M., Triandis, H. C., Bhawuk, D. P. S. & Gelfand, M. J. Horizontal and vertical dimensions of individualism and collectivism: A theoretical and measurement refinement. Cross Cult. Res. 29, 240–275 (1995).

    Article  Google Scholar 

  84. Sturgis, P., Roberts, C. & Smith, P. Middle alternatives revisited: How the neither/nor response acts as a way of saying ‘I don’t know’? Sociol. Methods Res. 43, 15–38 (2014).

    Article  Google Scholar 

  85. Raaijmakers, Q. A., Van Hoof, J., 't Hart, H., Verbogt, T. & Vollebergh, W. A. Adolescents’ midpoint responses on Likert-type scale items: Neutral or missing values? Int. J. Public Opin. Res. 12, 208–216 (2000).

    Article  Google Scholar 

  86. Krosnick, J. A. Response strategies for coping with the cognitive demands of attitude measures in surveys. Appl. Cogn. Psychol. 5, 213–236 (1991).

    Article  Google Scholar 

  87. Gligorić, V. & Vilotijević, A. ‘Who said it?’ How contextual information influences perceived profundity of meaningful quotes and pseudo-profound bullshit. Appl. Cogn. Psychol. 34, 535–542 (2020).

    Article  Google Scholar 

  88. O’Brien, T. L. & Noy, S. Cultural authority in comparative context: A multilevel analysis of trust in science and religion. J. Sci. Study Relig. 57, 495–513 (2018).

    Article  Google Scholar 

  89. McPhetres, J. & Zuckerman, M. Religiosity predicts negative attitudes towards science and lower levels of science literacy. PLoS ONE 13, e0207125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farias, M., Newheiser, A.-K., Kahane, G. & de Toledo, Z. Scientific faith: Belief in science increases in the face of stress and existential anxiety. J. Exp. Soc. Psychol. 49, 1210–1213 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cacciatore, M. A. et al. Opposing ends of the spectrum: Exploring trust in scientific and religious authorities. Public Underst. Sci. 27, 11–28 (2018).

    Article  PubMed  Google Scholar 

  92. McPhetres, J., Jong, J. & Zuckerman, M. Religious Americans have less positive attitudes toward science, but this does not extend to other cultures. Soc. Psychol. Pers. Sci. 12, 528–536 (2020).

    Article  Google Scholar 

  93. Rutjens, B. T. & van der Lee, R. Spiritual skepticism? Heterogeneous science skepticism in the Netherlands. Public Underst. Sci. 29, 335–352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rutjens, B. T. Science skepticism across 24 countries. Soc. Psychol. Pers. Sci. 13, 102–117 (2022).

    Article  Google Scholar 

  95. Pennycook, G., Cheyne, J. A., Seli, P., Koehler, D. J. & Fugelsang, J. A. Analytic cognitive style predicts religious and paranormal belief. Cognition 123, 335–346 (2012).

    Article  PubMed  Google Scholar 

  96. Pennycook, G., Ross, R. M., Koehler, D. J. & Fugelsang, J. A. Atheists and agnostics are more reflective than religious believers: Four empirical studies and a meta-analysis. PLoS ONE 11, e0153039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Macdonald, K., Germine, L., Anderson, A., Christodoulou, J. & McGrath, L. M. Dispelling the myth: Training in education or neuroscience decreases but does not eliminate beliefs in neuromyths. Front. Psychol. 8, 1314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mayo, R. in The Social Psychology of Gullibility: Conspiracy Theories, Fake News and Irrational Beliefs (eds Forgas, J. P. & Baumeister, R. F.) 140 (Routledge, 2019).

  99. Peirce, C. S. P. in The Essential Peirce, Volume 1: Selected Philosophical Writings (1867–1893), Vol. 1 (Indiana Univ. Press, 1992).

  100. Malka, A., Lelkes, Y., Srivastava, S., Cohen, A. B. & Miller, D. T. The association of religiosity and political conservatism: The role of political engagement. Polit. Psychol. 33, 275–299 (2012).

    Article  Google Scholar 

  101. Graham, J., Haidt, J. & Nosek, B. A. Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96, 1029–1046 (2009).

    Article  PubMed  Google Scholar 

  102. Johnson, M. K. et al. A mediational analysis of the role of right-wing authoritarianism and religious fundamentalism in the religiosity–prejudice link. Pers. Indiv. Diff. 50, 851–856 (2011).

    Article  Google Scholar 

  103. Grafman, J., Cristofori, I., Zhong, W. & Bulbulia, J. The neural basis of religious cognition. Curr. Dir. Psychol. Sci. 29, 126–133 (2020).

    Article  Google Scholar 

  104. Howell, E. L., Wirz, C. D., Scheufele, D. A., Brossard, D. & Xenos, M. A. Deference and decision-making in science and society: How deference to scientific authority goes beyond confidence in science and scientists to become authoritarianism. Public Underst. Sci. 29, 800–818 (2020).

    Article  PubMed  Google Scholar 

  105. Corner, A. & Hahn, U. Evaluating science arguments: Evidence, uncertainty, and argument strength. J. Exp. Psychol. Appl. 15, 199–212 (2009).

    Article  PubMed  Google Scholar 

  106. Scurich, N. & Shniderman, A. The selective allure of neuroscientific explanations. PLoS ONE 9, e107529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kruglanski, A. W. et al. in Advances in Experimental Social Psychology, Vol. 37, 345–392 (Elsevier, 2005).

  108. Kahan, D. M., Jenkins-Smith, H. & Braman, D. Cultural cognition of scientific consensus. J. Risk Res. 14, 147–174 (2011).

    Article  Google Scholar 

  109. Hox, J. J. C. M., van de Schoot, R. & Matthijsse, S. How few countries will do? Comparative survey analysis from a Bayesian perspective. Surv. Res. Methods 6, 87–93 (2012).

    Google Scholar 

  110. Lindeman, M., Svedholm-Hakkinen, A. M. & Lipsanen, J. Ontological confusions but not mentalizing abilities predict religious belief, paranormal belief, and belief in supernatural purpose. Cognition 134, 63–76 (2015).

    Article  PubMed  Google Scholar 

  111. Lun, V. M.-C. & Bond, M. H. Examining the relation of religion and spirituality to subjective well-being across national cultures. Psychol. Relig. Spiritual. 5, 304–315 (2013).

    Article  Google Scholar 

  112. Pfadt, J. M. & van den Bergh, D. Bayesrel: Bayesian reliability estimation. R package version 0.7.1 https://CRAN.R-project.org/package=Bayesrel (2021).

  113. Haaf, J. M. & Rouder, J. N. Developing constraint in Bayesian mixed models. Psychol. Methods 22, 779–798 (2017).

    Article  PubMed  Google Scholar 

  114. Rouder, J. N., Haaf, J. M., Davis-Stober, C. P. & Hilgard, J. Beyond overall effects: A Bayesian approach to finding constraints in meta-analysis. Psychol. Methods 24, 606–621 (2019).

    Article  PubMed  Google Scholar 

  115. Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2013).

    Google Scholar 

  116. Jeffreys, H. Theory of Probability 1st edn (Oxford Univ. Press, 1939). .

  117. Pearl, J. Causal diagrams for empirical research. Biometrika 82, 669–688 (1995).

    Article  Google Scholar 

  118. McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman & Hall/CRC, 2016).

    Google Scholar 

  119. Pearl, J. The seven tools of causal inference, with reflections on machine learning. Commun. ACM 62, 54—60 (2019).

    Article  Google Scholar 

  120. Rohrer, J. M. Thinking clearly about correlations and causation: Graphical causal models for observational data. Adv. Methods Pract. Psychol. Sci. 1, 27–42 (2018).

    Article  Google Scholar 

  121. Barrett, M. Ggdag: Analyze and create elegant directed acyclic graphs. R package version 0.2.4 https://CRAN.R-project.org/package=ggdag (2021).

  122. Albrecht, S. L. & Heaton, T. B. Secularization, higher education, and religiosity. Rev. Relig. Res. 26, 43–58 (1984).

    Article  Google Scholar 

  123. Schwadel, P. Does higher education cause religious decline? A longitudinal analysis of the within- and between-person effects of higher education on religiosity. Sociol. Q. 57, 759–786 (2016).

    Article  Google Scholar 

  124. Miller, A. S. & Hoffmann, J. P. Risk and religion: An explanation of gender differences in religiosity. J. Sci. Study Relig. 34, 63–75 (1995).

    Article  Google Scholar 

  125. Argue, A., Johnson, D. R. & White, L. K. Age and religiosity: Evidence from a three-wave panel analysis. J. Sci. Study Relig. 38, 423–435 (1999).

    Article  Google Scholar 

  126. Pyle, R. E. Trends in religious stratification: Have religious group socioeconomic distinctions declined in recent decades? Sociol. Relig. 67, 61–79 (2006).

    Article  Google Scholar 

  127. Smith, C. & Faris, R. Socioeconomic inequality in the American religious system: An update and assessment. J. Sci. Study Relig. 44, 95–104 (2005).

    Article  Google Scholar 

  128. Rouder, J. N., Morey, R. D., Speckman, P. L. & Province, J. M. Default Bayes factors for ANOVA designs. J. Math. Psychol. 56, 356–374 (2012).

    Article  Google Scholar 

  129. Rouder, J. N. & Morey, R. D. Default Bayes factors for model selection in regression. Multivar. Behav. Res. 47, 877–903 (2012).

    Article  Google Scholar 

  130. Bürkner, P.-C. Brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Templeton Foundation (grant number 60663) to M.v.E., the Cogito Foundation (grant number R10917) to R.Mc.K., the Australian Research Council (grant number DP180102384) to N.L. and R.M.R., Templeton Religion Trust (reference TRT0196) to J.A.B., and the French Agence Nationale de la Recherche (reference 17-EURE-0017 FrontCog and 10-IDEX-0001-02 PSL) to S.A. The analysis was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative.

Author information

Authors and Affiliations

Authors

Contributions

M.v.E. and S.H. conceptualized the idea, designed the study and formulated the hypotheses. S.A., T.B., R.B., A.C., C.G., R.G., K.H., C.K., R.Mc.K., A.N., L.Q., A.R., J.E.R., R.M.R., H.T., F.U., R.W., D.X. and S.H. provided cultural knowledge (including translations) for adjusting the materials to the national context and collected the data. S.H. analysed the data with input from J.A.B. and J.M.H. S.H. wrote the first draft of the manuscript, with major critical input from J.M.H., J.A.B., R.M.R., R.Mc.K. and M.v.E. and additional suggestions from S.A., T.B., R.B., A.C., C.G., R.G., W.M.G., K.H., C.K., N.L., A.N., L.Q., A.R., J.E.R., B.T.R., H.T., F.U., R.W. and D.X.

Corresponding author

Correspondence to Suzanne Hoogeveen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Nick Allum, Friederike Hendriks, Jens Koed Madsen and Rens van de Schoot for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data, analysis code, and stimuli are provided at https://osf.io/qsyvw/. Full materials in each language can be found at https://osf.io/kywjs/.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1–5, Results, Discussion (on COVID-19).

Reporting Summary.

Peer Review Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoogeveen, S., Haaf, J.M., Bulbulia, J.A. et al. The Einstein effect provides global evidence for scientific source credibility effects and the influence of religiosity. Nat Hum Behav 6, 523–535 (2022). https://doi.org/10.1038/s41562-021-01273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-021-01273-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing