Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Psychological and behavioural considerations for integrating polygenic risk scores for disease into clinical practice

Abstract

A polygenic risk score (PRS) summarizes in one number an individual’s estimated genetic association with a specific trait or disease based on the common DNA variants included in the score. Disease PRSs have the potential to positively affect population health by improving disease risk prediction, thereby also potentially improving disease prevention, early intervention and treatment. However, given the potential psychological, behavioural and other harms, there are also concerns about integrating PRSs into clinical tools and healthcare systems. Here we assess five arguments against implementing PRSs for physical disease in clinical practice that revolve around psychological and behavioural considerations. For each argument, we consider a counterargument, the evidence and underlying theory, any gaps in the evidence base and possible future directions and research priorities. We conclude that, although there may be other barriers to implementation, there is currently little evidence of psychological or behavioural harms from integrating PRSs into practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 53, D977–D985 (2023).

    Article  Google Scholar 

  2. Lambert, S. A. et al. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat. Genet. 53, 420–425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiang, R. et al. Recent advances in polygenic scores: translation, equitability, methods and FAIR tools. Genome Med. 16, 33 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Inouye, M. et al. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J. Am. Coll. Cardiol. 72, 1883–1893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sun, L. et al. Polygenic risk scores in cardiovascular risk prediction: a cohort study and modelling analyses. PLoS Med. 18, e1003498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, A. et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 21, 1708–1718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leonenko, G. et al. Identifying individuals with high risk of Alzheimer’s disease using polygenic risk scores. Nat. Commun. 12, 4506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, Z. et al. Polygenic risk scores have high diagnostic capacity in ankylosing spondylitis. Ann. Rheum. Dis. 80, 1168–1174 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Sharp, S. A. et al. Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. Diabetes Care 42, 200–207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Sud, A. et al. Realistic expectations are key to realising the benefits of polygenic scores. Br. Med. J. 380, e073149 (2023).

    Article  Google Scholar 

  12. Hancock criticised over DNA test ‘over reaction’. BBC News https://www.bbc.co.uk/news/health-47652060 (2019).

  13. Lewis, A. C. F. et al. Patient and provider perspectives on polygenic risk scores: implications for clinical reporting and utilization. Genome Med. 14, 114 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ballard, L. M., Horton, R. H., Fenwick, A. & Lucassen, A. M. Genome sequencing in healthcare: understanding the UK general public’s views and implications for clinical practice. Eur. J. Hum. Genet. 28, 155–164 (2020).

    Article  PubMed  Google Scholar 

  15. Genomics England, Sciencewise & UK Research and Innovation. A Public Dialogue On Genomic Medicine: Time For a New Social Contract? Key Findings and Conclusions (Ipsos MORI, 2019).

  16. Dar-Nimrod, I. & Heine, S. J. Genetic essentialism: on the deceptive determinism of DNA. Psychol. Bull. 137, 800–818 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harden, K. P. Genetic determinism, essentialism and reductionism: semantic clarity for contested science. Nat. Rev. Genet. 24, 197–204 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Carver, R. B. et al. Young adults’ belief in genetic determinism, and knowledge and attitudes towards modern genetics and genomics: the PUGGS questionnaire. PLoS ONE 12, e0169808 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parrott, R., Kahl, M. L., Ndiaye, K. & Traeder, T. Health communication, genetic determinism, and perceived control: the roles of beliefs about susceptibility and severity versus disease essentialism. J. Health Commun. 17, 762–778 (2012).

    Article  PubMed  Google Scholar 

  20. Donovan, B. M. et al. Genomics literacy matters: supporting the development of genomics literacy through genetics education could reduce the prevalence of genetic essentialism. J. Res. Sci. Teach. 58, 520–550 (2020).

    Article  Google Scholar 

  21. Little, I. D., Koehly, L. M. & Gunter, C. Understanding changes in genetic literacy over time and in genetic research participants. Am. J. Hum. Genet. 109, 2141–2151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fuat, A. et al. A polygenic risk score added to a QRISK®2 cardiovascular disease risk calculator demonstrated robust clinical acceptance and clinical utility in the primary care setting. Eur. J. Prev. Cardiol. 31, 716–722 (2024).

    Article  PubMed  Google Scholar 

  23. Roberts, J. S. et al. Patient understanding of, satisfaction with, and perceived utility of whole-genome sequencing: findings from the MedSeq Project. Genet. Med. 20, 1069–1076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Snir, M. et al. Democratizing genomics: leveraging software to make genetics an integral part of routine care. Am. J. Med. Genet. C Semin. Med. Genet. 187, 14–27 (2021).

    Article  PubMed  Google Scholar 

  25. Whiwon, L. et al. Patient-facing digital tools for delivering genetic services: a systematic review. J. Med. Genet. 60, 1–10 (2023).

    Article  PubMed  Google Scholar 

  26. Mason, A. M. et al. What makes a good life: using theatrical performance to enhance communication about polygenic risk scores research in patient and public involvement. J. Commun. Genet. 14, 453–458 (2023).

    Article  Google Scholar 

  27. Sanderson, S. C. et al. Development and preliminary evaluation of an online educational video about whole-genome sequencing for research participants, patients, and the general public. Genet. Med. 18, 501–512 (2016).

    Article  PubMed  Google Scholar 

  28. Lewis, C. et al. Development and mixed-methods evaluation of an online animation for young people about genome sequencing. Eur. J. Hum. Genet. 28, 896–906 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meisel, S. F. et al. Impact of a decision aid about stratified ovarian cancer risk-management on women’s knowledge and intentions: a randomised online experimental survey study. BMC Public Health 17, 882 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reyna, V. F. A theory of medical decision making and health: fuzzy trace theory. Med. Decis. Mak. 28, 850–865 (2008).

    Article  Google Scholar 

  31. Wolfe, C. R. et al. Efficacy of a web-based intelligent tutoring system for communicating genetic risk of breast cancer: a fuzzy-trace theory approach. Med. Decis. Mak. 35, 46–59 (2015).

    Article  Google Scholar 

  32. Austin, J. C. Evidence-based genetic counseling for psychiatric disorders: a road map. Cold Spring Harb. Perspect. Med. 10, a036608 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Connolly, J. J. et al. Education and electronic medical records and genomics network, challenges, and lessons learned from a large-scale clinical trial using polygenic risk scores. Genet. Med. 25, 100906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Linder, J. E. et al. Returning integrated genomic risk and clinical recommendations: the eMERGE study. Genet. Med. 25, 100006 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kullo, I. J. et al. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES clinical trial). Circulation 133, 1181–1188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Silarova, B. et al. Information and Risk Modification Trial (INFORM): design of a randomised controlled trial of communicating different types of information about coronary heart disease risk, alongside lifestyle advice, to achieve change in health-related behaviour. BMC Public Health 15, 868 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Silarova, B. et al. Effect of communicating phenotypic and genetic risk of coronary heart disease alongside web-based lifestyle advice: the INFORM Randomised Controlled Trial. Heart 105, 982–989 (2019).

    Article  PubMed  Google Scholar 

  38. Shefer, G., Silarova, B., Usher-Smith, J. & Griffin, S. The response to receiving phenotypic and genetic coronary heart disease risk scores and lifestyle advice—a qualitative study. BMC Public Health 16, 1221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wallingford, C. K. et al. Models of communication for polygenic scores and associated psychosocial and behavioral effects on recipients: a systematic review. Genet. Med. 25, 1–11 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Manchanda, R. et al. Randomised trial of population-based BRCA testing in Ashkenazi jews: long-term outcomes. BJOG 127, 364–375 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Manchanda, R. et al. Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled trial. J. Natl Cancer Inst. 107, 379 (2015).

    Article  PubMed  Google Scholar 

  42. Rayes, N. et al. MAGENTA (Making Genetic Testing Accessible): a prospective randomized controlled trial comparing online genetic education and telephone genetic counseling for hereditary cancer genetic testing. BMC Cancer 19, 648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Swisher, E. M. et al. Remotely delivered cancer genetic testing in the Making Genetic Testing Accessible (MAGENTA) trial: a randomized clinical trial. JAMA Oncol. 9, 1547–1555 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nadkarni, G. N. et al. Effects of testing and disclosing ancestry-specific genetic risk for kidney failure on patients and health care professionals: a randomized clinical trial. JAMA Netw. Open 5, e221048 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sanderson, S. C. et al. Psychological and behavioural impact of returning personal results from whole-genome sequencing: the HealthSeq project. Eur. J. Hum. Genet. 25, 280–292 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zoltick, E. S. et al. Predispositional genome sequencing in healthy adults: design, participant characteristics, and early outcomes of the PeopleSeq Consortium. Genome Med. 11, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Broadstock, M., Michie, S. & Marteau, T. Psychological consequences of predictive genetic testing: a systematic review. Eur. J. Hum. Genet. 8, 731–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Heshka, J. T. et al. A systematic review of perceived risks, psychological and behavioral impacts of genetic testing. Genet. Med. 10, 19–32 (2008).

    Article  PubMed  Google Scholar 

  49. Yanes, T. et al. Psychosocial and behavioral outcomes of genomic testing in cancer: a systematic review. Eur. J. Hum. Genet. 27, 28–35 (2019).

    Article  PubMed  Google Scholar 

  50. Peck, L., Borle, K., Folkersen, L. & Austin, J. Why do people seek out polygenic risk scores for complex disorders, and how do they understand and react to results? Eur. J. Hum. Genet. 30, 81–87 (2022).

    Article  PubMed  Google Scholar 

  51. Folkersen, L. et al. Impute.me: an open-source, non-profit tool for using data from direct-to-consumer genetic testing to calculate and interpret polygenic risk scores. Front. Genet. 11, 578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lazarus, R. S. & Folkman, S. Transactional theory and research on emotions and coping. Eur. J. Pers. 1, 141–169 (1987).

    Article  Google Scholar 

  53. Leventhal, H., Phillips, L. A. & Burns, E. The common-sense model of self-regulation (CSM): a dynamic framework for understanding illness self-management. J. Behav. Med. 39, 935–946 (2016).

    Article  PubMed  Google Scholar 

  54. Hagger, M. S. & Orbell, S. The common sense model of illness self-regulation: a conceptual review and proposed extended model. Health Psychol. Rev. 16, 347–377 (2022).

    Article  PubMed  Google Scholar 

  55. Athens, B. A. et al. A systematic review of randomized controlled trials to assess outcomes of genetic counseling. J. Genet. Couns. 26, 902–933 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hollands, G. J. et al. The impact of communicating genetic risks of disease on risk-reducing health behaviour: systematic review with meta-analysis. Br. Med. J. 352, i1102 (2016).

    Article  Google Scholar 

  57. Hippisley-Cox, J., Coupland, C. & Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. Br. Med. J. 357, j2099 (2017).

    Article  Google Scholar 

  58. French, D. P. et al. Can communicating personalised disease risk promote healthy behaviour change? A systematic review of systematic reviews. Ann. Behav. Med. 51, 718–729 (2017).

    Article  PubMed  Google Scholar 

  59. Duerden, M., O’Flynn, N. & Qureshi, N. Cardiovascular risk assessment and lipid modification: NICE guideline. Br. J. Gen. Pract. 65, 378–380 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ma, C. et al. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. Br. Med. J. 359, j4849 (2017).

    Article  Google Scholar 

  61. Michie, S. et al. Effective techniques in healthy eating and physical activity interventions: a meta-regression. Health Psychol. 28, 690–701 (2009).

    Article  PubMed  Google Scholar 

  62. Samdal, G. B. et al. Effective behaviour change techniques for physical activity and healthy eating in overweight and obese adults; systematic review and meta-regression analyses. Int. J. Behav. Nutr. Phys. Act. 14, 42 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ruiter, R. A., Kessels, L. T., Peters, G. J. & Kok, G. Sixty years of fear appeal research: current state of the evidence. Int. J. Psychol. 49, 63–70 (2014).

    Article  PubMed  Google Scholar 

  64. Rogers, R. W. A protection motivation theory of fear appeals and attitude change. J. Psychol. 91, 93–114 (1975).

    Article  PubMed  Google Scholar 

  65. Witte, K.Putting the fear back into fear appeals: the extended parallel process model. Commun. Monogr. 59, 329–349 (1992).

    Article  Google Scholar 

  66. Evans, D. A., Stempel, A. V., Vale, R. & Branco, T. Cognitive control of escape behaviour. Trends Cogn. Sci. 23, 334–348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Milne, S., Sheeran, P. & Orbell, S. Prediction and intervention in health-related behavior: a meta-analytic review of protection motivation theory. J. Appl. Soc. Psychol. 30, 106–143 (2006).

    Article  Google Scholar 

  68. Baranowski, T., Cullen, K. W., Nicklas, T., Thompson, D. & Baranowski, J. Are current health behavioral change models helpful in guiding prevention of weight gain efforts? Obes. Res. 11, 23S–43S (2003).

    Article  PubMed  Google Scholar 

  69. Sturm, A. C. et al. Clinical genetic testing for familial hypercholesterolemia: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 72, 662–680 (2018).

    Article  PubMed  Google Scholar 

  70. Metcalfe, K. A. et al. International variation in rates of uptake of preventive options in BRCA1 and BRCA2 mutation carriers. Int. J. Cancer 122, 2017–2022 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Buchanan, A. H. et al. Early cancer diagnoses through BRCA1/2 screening of unselected adult biobank participants. Genet. Med. 20, 554–558 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Atabaki-Pasdar, N. et al. Statistical power considerations in genotype-based recall randomized controlled trials. Sci. Rep. 6, 37307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Widén, E. et al. How communicating polygenic and clinical risk for atherosclerotic cardiovascular disease impacts health behavior: an observational follow-up study. Circ. Genom. Precis. Med. 15, e003459 (2022).

    Article  PubMed  Google Scholar 

  74. Tschigg, K. et al. How to communicate and what to disclose to participants in a recall-by-genotype research approach: a multistep empirical study. J. Commun. Genet. 15, 615–630 (2024).

    Article  Google Scholar 

  75. Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. A Guide to Tailoring Health Programmes: Using Behavioural and Cultural Insights to Tailor Health Policies, Services and Communications to the Needs and Circumstances of People and Communities (World Health Organization, 2023).

  77. Turnbull, C. et al. Population screening requires robust evidence—genomics is no exception. Lancet 403, 583–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Collins, R. E., Wright, A. J. & Marteau, T. M. Impact of communicating personalized genetic risk information on perceived control over the risk: a systematic review. Genet. Med. 13, 273–277 (2011).

    Article  PubMed  Google Scholar 

  79. Paddison, C. A. et al. Are people with negative diabetes screening tests falsely reassured? Parallel group cohort study embedded in the ADDITION (Cambridge) randomised controlled trial. Br. Med. J. 339, b4535 (2009).

    Article  Google Scholar 

  80. Cooper, G. C., Harvie, M. N. & French, D. P. Do negative screening test results cause false reassurance? A systematic review. Br. J. Health Psychol. 22, 958–977 (2017).

    Article  PubMed  Google Scholar 

  81. Spiegelhalter, D. Risk and uncertainty communication. Annu. Rev. Stat. Appl. 4, 31–60 (2017).

    Article  Google Scholar 

  82. Dixon, P., Briggs, S. & Lucassen, A Editorial on polygenic risk scores: colloquium held at the Centre for Personalised Medicine, Oxford. Camb. Prism. Precis. Med. 1, e32 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Abacan, M. et al. The global state of the genetic counseling profession. Eur. J. Hum. Genet. 27, 183–197 (2019).

    Article  PubMed  Google Scholar 

  84. Lapointe, J. et al. Polygenic risk scores and risk-stratified breast cancer screening: familiarity and perspectives of health care professionals. Genet. Med. 24, 2380–2388 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Smit, A. K. et al. Knowledge, views and expectations for cancer polygenic risk testing in clinical practice: a cross-sectional survey of health professionals. Clin. Genet. 100, 430–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Alharbi, A. B. et al. Understanding factors influencing the implementation of medicine risk communications by healthcare professionals in clinical practice: a systematic review using the Theoretical Domains Framework. Res. Soc. Adm. Pharm. 20, 86–98 (2024).

    Article  Google Scholar 

  87. Van de Water, L. F. et al. Effect of a prediction tool and communication skills training on communication of treatment outcomes: a multicenter stepped wedge clinical trial (the SOURCE trial). EClinicalMedicine 64, 102244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fagerlin, A., Zikmund-Fisher, B. J. & Ubel, P. A. Helping patients decide: ten steps to better risk communication. J. Natl Cancer Inst. 103, 1436–1443 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Implementing polygenic scores for cardiovascular disease into NHS Health Checks. PHG Foundation https://www.phgfoundation.org/publications/reports/prs-implementation-and-delivery/ (2023).

  90. Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat. Med. 27, 1876–1884 (2021).

    Article  CAS  Google Scholar 

  91. Allen, C. G. et al. A scoping review of social and behavioral science research to translate genomic discoveries into population health impact. Transl. Behav. Med. 11, 901–911 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Lewis and J. Waller for feedback on an early draft of this paper.

Author information

Authors and Affiliations

Authors

Contributions

S.C.S. and M.I. jointly developed the overall concept for the manuscript, wrote the initial manuscript and revised it based on reviewer and editorial feedback.

Corresponding author

Correspondence to Saskia C. Sanderson.

Ethics declarations

Competing interests

M.I. is a trustee of the Public Health Genomics Foundation and a member of the Scientific Advisory Board of Open Targets. M.I. has research collaborations with AstraZeneca, Nightingale Health and Pfizer that are unrelated to this work. S.C.S. declares no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Anna C. F. Lewis and Tatiane Yanes for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanderson, S.C., Inouye, M. Psychological and behavioural considerations for integrating polygenic risk scores for disease into clinical practice. Nat Hum Behav 9, 1098–1106 (2025). https://doi.org/10.1038/s41562-025-02200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02200-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing