Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Higher-order interactions shape collective human behaviour

Subjects

Abstract

Traditional social network models focus on pairwise interactions, overlooking the complexity of group-level dynamics that shape collective human behaviour. Here we outline how the framework of higher-order social networks—using mathematical representations beyond simple graphs—can more accurately represent interactions involving multiple individuals. Drawing from empirical data including scientific collaborations and contact networks, we demonstrate how higher-order structures reveal mechanisms of group formation, social contagion, cooperation and moral behaviour that are invisible in dyadic models. By moving beyond dyads, this approach offers a transformative lens for understanding the relational architecture of human societies, opening new directions for behavioural experiments, cultural dynamics, team science and group behaviour as well as new cross-disciplinary research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Higher-order representations of social network data.
Fig. 2: Collaboration hypergraph from affiliation data.
Fig. 3: Temporal face-to-face contact hypergraphs.
Fig. 4: Higher-order models of group formation.
Fig. 5: Models of social contagion.
Fig. 6: Multiplayer games on hypergraphs.

Similar content being viewed by others

References

  1. Christakis, N. A. & Fowler, J. H. Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives (Little, Brown, 2009).

  2. Easley, D. & Kleinberg, J. Networks, Crowds, and Markets (Cambridge Univ. Press, 2010).

  3. Moreno, J. L. & Jennings, H. H. Statistics of social configurations. Sociometry 1, 342–374 (1938).

    Article  Google Scholar 

  4. Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).

    Article  Google Scholar 

  5. Milgram, S. The small world problem. Psychol. Today 2, 60–67 (1967).

    Google Scholar 

  6. Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).

  7. Estrada, E. The Structure of Complex Networks: Theory and Applications (Oxford Univ. Press, 2011).

  8. Barabási, A.-L. & Pósfai, M. Network Science (Cambridge Univ. Press, 2016).

  9. Latora, V., Nicosia, V. & Russo, G. Complex Networks: Principles, Methods and Applications (Cambridge Univ. Press, 2017).

  10. Atkin, R. H. From cohomology in physics to q-connectivity in social science. Int. J. Man Mach. Stud. 4, 139–167 (1972).

    Article  Google Scholar 

  11. Atkin, R. Mathematical Structure in Human Affairs (Heinemann Educational, 1974).

  12. Berge, C. Graphs and Hypergraphs (North-Holland Pub. Co., 1973).

  13. Le Bon, G. The Crowd: A Study of the Popular Mind (Routledge, 1895).

  14. Simmel, G. The number of members as determining the sociological form of the group. II. Am. J. Sociol. 8, 158–196 (1902).

    Article  Google Scholar 

  15. Lewin, K. Principles of Topological Psychology (McGraw-Hill, 1936).

  16. Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences (Cambridge Univ. Press, 1994).

  17. Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).

    Article  Google Scholar 

  18. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).

    Article  Google Scholar 

  21. Aleksandrov, P. S. Combinatorial Topology Vol. 1 (Courier Corporation, 1998).

  22. Salnikov, V., Cassese, D. & Lambiotte, R. Simplicial complexes and complex systems. Eur. J. Phys. 40, 014001 (2018).

    Article  Google Scholar 

  23. Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

    Article  CAS  Google Scholar 

  24. Gomez-Gardenes, J., Romance, M., Criado, R., Vilone, D. & Sánchez, A. Evolutionary games defined at the network mesoscale: the public goods game. Chaos Interdiscip. J. Nonlinear Sci. 21, 016113 (2011).

    Article  Google Scholar 

  25. Grabowski, A. & Kosiński, R. Epidemic spreading in a hierarchical social network. Phys. Rev. E 70, 031908 (2004).

    Article  CAS  Google Scholar 

  26. Benson, A. R. Three hypergraph eigenvector centralities. SIAM J. Math. Data Sci. 1, 293–312 (2019).

    Article  Google Scholar 

  27. Tudisco, F. & Higham, D. J. Node and edge nonlinear eigenvector centrality for hypergraphs. Commun. Phys. 4, 201 (2021).

    Article  Google Scholar 

  28. Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl Acad. Sci. USA 115, E11221–E11230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lotito, Q. F., Musciotto, F., Montresor, A. & Battiston, F. Higher-order motif analysis in hypergraphs. Commun. Phys. 5, 79 (2022).

    Article  Google Scholar 

  30. Lotito, Q. F., Musciotto, F., Battiston, F. & Montresor, A. Exact and sampling methods for mining higher-order motifs in large hypergraphs. Computing 106, 475–494 (2023).

    Article  Google Scholar 

  31. Chodrow, P. S., Veldt, N. & Benson, A. R. Generative hypergraph clustering: from blockmodels to modularity. Sci. Adv. 7, eabh1303 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eriksson, A., Edler, D., Rojas, A., de Domenico, M. & Rosvall, M. How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs. Commun. Phys. 4, 133 (2021).

    Article  Google Scholar 

  33. Contisciani, M., Battiston, F. & De Bacco, C. Inference of hyperedges and overlapping communities in hypergraphs. Nat. Commun. 13, 7229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruggeri, N., Contisciani, M., Battiston, F. & De Bacco, C. Community detection in large hypergraphs. Sci. Adv. 9, eadg9159 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tudisco, F. & Higham, D. J. Core–periphery detection in hypergraphs. SIAM J. Math. Data Sci. 5, 1–21 (2023).

    Article  Google Scholar 

  36. Cencetti, G., Battiston, F., Lepri, B. & Karsai, M. Temporal properties of higher-order interactions in social networks. Sci. Rep. 11, 7028 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Di Gaetano, L., Battiston, F. & Starnini, M. Percolation and topological properties of temporal higher-order networks. Phys. Rev. Lett. 132, 037401 (2024).

    Article  PubMed  Google Scholar 

  38. Gallo, L., Lacasa, L., Latora, V. & Battiston, F. Higher-order correlations reveal complex memory in temporal hypergraphs. Nat. Commun. 15, 4754 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iacopini, I., Karsai, M. & Barrat, A. The temporal dynamics of group interactions in higher-order social networks. Nat. Commun. 15, 7391 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lotito, Q. F. et al. Hypergraphx: a library for higher-order network analysis. J. Complex Netw. 11, cnad019 (2023).

    Article  Google Scholar 

  41. Landry, N. W. et al. XGI: a Python package for higher-order interaction networks. J. Open Source Softw. 8, 5162 (2023).

    Article  Google Scholar 

  42. Praggastis, B. et al. HyperNetX: a Python package for modeling complex network data as hypergraphs. J. Open Source Softw. 9, 6016 (2024).

    Article  Google Scholar 

  43. McPherson, J. Hypernetwork sampling: duality and differentiation among voluntary organizations. Soc. Netw. 3, 225–249 (1982).

    Article  Google Scholar 

  44. Foster, B. & Seidman, S. Urban structures derived from collections of overlapping subsets. Urban Anthropol. 11, 177–192 (1982).

    Google Scholar 

  45. Foster, B. & Seidman, S. Overlap structure of ceremonial events in two Thai villages. Thai J. Dev. Adm. 24, 143–157 (1984).

    Google Scholar 

  46. Faust, K. Centrality in affiliation networks. Soc. Netw. 19, 157–191 (1997).

    Article  Google Scholar 

  47. Bonacich, P., Holdren, A. C. & Johnston, M. Hyper-edges and multidimensional centrality. Soc. Netw. 26, 189–203 (2004).

    Article  Google Scholar 

  48. Estrada, E. & Rodríguez-Velázquez, J. A. Subgraph centrality and clustering in complex hyper-networks. Phys. A 364, 581–594 (2006).

    Article  Google Scholar 

  49. Ghoshal, G., Zlatić, V., Caldarelli, G. & Newman, M. E. J. Random hypergraphs and their applications. Phys. Rev. E 79, 066118 (2009).

    Article  Google Scholar 

  50. Zlatić, V., Ghoshal, G. & Caldarelli, G. Hypergraph topological quantities for tagged social networks. Phys. Rev. E 80, 036118 (2009).

    Article  Google Scholar 

  51. Manton, K. G. & Woodbury, M. A. Grade of membership generalizations and aging research. Exp. Aging Res. 17, 217–226 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Chiyo, P. I., Moss, C. J. & Alberts, S. C. The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. PLoS ONE 7, e31382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Newman, M. E. J. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001).

    Article  CAS  Google Scholar 

  54. Newman, M. E. J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001).

    Article  CAS  Google Scholar 

  55. Newman, M. E. J. The structure of scientific collaboration networks. Proc. Natl Acad. Sci. USA 98, 404–409 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316, 1036–1039 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl Acad. Sci. USA 111, 3984–3989 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Moore, T. J., Drost, R. J., Basu, P., Ramanathan, R. & Swami, A. Analyzing collaboration networks using simplicial complexes: a case study. In 2012 Proceedings IEEE INFOCOM Workshops 238–243 (IEEE, 2012).

  59. Xiao, Q. Node importance measure for scientific research collaboration from hypernetwork perspective. Teh. Vjesn. 23, 397–404 (2016).

    Google Scholar 

  60. Juul, J. L., Benson, A. R. & Kleinberg, J. Hypergraph patterns and collaboration structure. Front. Phys. 11, 1301994 (2024).

    Article  Google Scholar 

  61. Carley, K. A theory of group stability. Am. Sociol. Rev. 56, 331–354 (1991).

    Article  Google Scholar 

  62. Guimera, R., Uzzi, B., Spiro, J. & Amaral, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science 308, 697–702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Musciotto, F., Battiston, F. & Mantegna, R. N. Identifying maximal sets of significantly interacting nodes in higher-order networks. Preprint at https://doi.org/10.48550/arXiv.2209.12712 (2022).

  64. Chowdhary, S., Gallo, L., Musciotto, F. & Battiston, F. Team careers in science: formation, composition and success of persistent collaborations. Preprint at https://doi.org/10.48550/arXiv.2407.09326 (2024).

  65. Patania, A., Vaccarino, F. & Petri, G. Topological analysis of data. EPJ Data Sci. 6, 7 (2017).

    Article  Google Scholar 

  66. Carstens, C. J. & Horadam, K. J. Persistent homology of collaboration networks. Math. Probl. Eng. 2013, 1–7 (2013).

    Article  Google Scholar 

  67. Patania, A., Petri, G. & Vaccarino, F. The shape of collaborations. EPJ Data Sci. 6, 18 (2017).

    Article  Google Scholar 

  68. Burt, R. S. Structural Holes: The Social Structure of Competition (Harvard Univ. Press, 2009).

  69. Moreland, R. L. Are dyads really groups? Small Group Res. 41, 251–267 (2010).

    Article  Google Scholar 

  70. Stopczynski, A. et al. Measuring large-scale social networks with high resolution. PLoS ONE 9, e95978 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sekara, V., Stopczynski, A. & Lehmann, S. Fundamental structures of dynamic social networks. Proc. Natl Acad. Sci. USA 113, 9977–9982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sapiezynski, P., Stopczynski, A., Lassen, D. D. & Lehmann, S. Interaction data from the Copenhagen Networks Study. Sci. Data 6, 315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Eagle, N. & Pentland, A. S. Reality mining: sensing complex social systems. Pers. Ubiquitous Comput. 10, 255–268 (2006).

    Article  Google Scholar 

  74. ISI Foundation, CNRS and Bitmanufactory. SocioPatterns. sociopatterns.org http://www.sociopatterns.org (2008).

  75. Cattuto, C. et al. Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5, e11596 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Isella, L. et al. What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011).

    Article  PubMed  Google Scholar 

  77. Génois, M. et al. Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Netw. Sci. 3, 326–347 (2015).

    Article  Google Scholar 

  78. Vanhems, P. et al. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE 8, e73970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, R. et al. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proc. 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing 3–14 (2014).

  80. Dartmouth College. StudentLife Study. dartmouth.edu https://studentlife.cs.dartmouth.edu (2013).

  81. Fournet, J. & Barrat, A. Contact patterns among high school students. PLoS ONE 9, e107878 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Stehlé, J. et al. High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6, e23176 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dai, S. et al. Longitudinal data collection to follow social network and language development dynamics at preschool. Sci. Data 9, 777 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sapiezynski, P., Stopczynski, A., Wind, D. K., Leskovec, J. & Lehmann, S. Inferring person-to-person proximity using WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 24 (2017).

    Article  Google Scholar 

  85. Reichert, L., Brack, S. & Scheuermann, B. Privacy-preserving contact tracing of COVID-19 patients. IACR Cryptol. ePrint Arch. 2020, 375 (2020).

    Google Scholar 

  86. Mancastroppa, M., Iacopini, I., Petri, G. & Barrat, A. Hyper-cores promote localization and efficient seeding in higher-order processes. Nat. Commun. 14, 6223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krause, J., James, R., Franks, D. W. & Croft, D. P. Animal Social Networks (Oxford Univ. Press, 2015).

  88. Betti, L., Musciotto, F., Papageorgiou, D., Battiston, F. & Farine, D. R. Beyond the dyad: higher-order structure within cohesive animal groups reveals the social pathway to leadership. Preprint at bioRxiv https://doi.org/10.1101/2022.05.30.494018 (2022).

  89. Iacopini, I., Foote, J. R., Fefferman, N. H., Derryberry, E. P. & Silk, M. J. Not your private tête-à-tête: leveraging the power of higher-order networks to study animal communication. Phil. Trans. B 379, 20230190 (2024).

    Article  Google Scholar 

  90. Coleman, J. S. Foundations of Social Theory (Harvard Univ. Press, 1994).

  91. Starnini, M., Baronchelli, A. & Pastor-Satorras, R. Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110, 168701 (2013).

    Article  PubMed  Google Scholar 

  92. Starnini, M., Baronchelli, A. & Pastor-Satorras, R. Model reproduces individual, group and collective dynamics of human contact networks. Soc. Netw. 47, 130–137 (2016).

    Article  Google Scholar 

  93. Duncan, S. & Fiske, D. W. Face-to-Face Interaction: Research, Methods, and Theory (Routledge, 2015).

  94. Heider, F. The Psychology of Interpersonal Relations (John Wiley and Sons, 1958).

  95. Doreian, P., Kapuscinski, R., Krackhardt, D. & Szczypula, J. in Evolution of Social Networks (eds Doreian, P. & Stokman, F.) 129–147 (Routledge, 2013).

  96. Hummon, N. P. & Doreian, P. Some dynamics of social balance processes: bringing Heider back into balance theory. Soc. Netw. 25, 17–49 (2003).

    Article  Google Scholar 

  97. Cartwright, D. & Harary, F. Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63, 277—293 (1956).

    Article  PubMed  Google Scholar 

  98. Gallo, L., Zappalà, C., Karimi, F. & Battiston, F. Higher-order modeling of face-to-face interactions. Preprint at https://doi.org/10.48550/arXiv.2406.05026 (2024).

  99. Oliveira, M. et al. Group mixing drives inequality in face-to-face gatherings. Commun. Phys. 5, 127 (2022).

    Article  Google Scholar 

  100. Veldt, N., Benson, A. R. & Kleinberg, J. Combinatorial characterizations and impossibilities for higher-order homophily. Sci. Adv. 9, eabq3200 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sarker, A., Northrup, N. & Jadbabaie, A. Higher-order homophily on simplicial complexes. Proc. Natl Acad. Sci. USA 121, e2315931121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Martin-Gutierrez, S., van Dissel, M. N. C. & Karimi, F. The hidden architecture of connections: how do multidimensional identities shape our social networks? Preprint at https://doi.org/10.48550/arXiv.2406.17043 (2024).

  103. Garip, F. & Molina, M. D. in Research Handbook on Analytical Sociology (ed. Manzo, G.) 308–320 (Edward Elgar, 2021).

  104. Grassly, N. C. & Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6, 477–487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Daley, D. J. & Kendall, D. G. Epidemics and rumours. Nature 204, 1118 (1964).

    Article  CAS  PubMed  Google Scholar 

  106. Goffman, W. & Newill, V. A. Generalization of epidemic theory: an application to the transmission of ideas. Nature 204, 225–228 (1964).

    Article  CAS  PubMed  Google Scholar 

  107. Bettencourt, L., Cintrón-Arias, A., Kaiser, D. I. & Castillo-Chavez, C. The power of a good idea: quantitative modeling of the spread of ideas from epidemiological models. Phys. A 364, 513–536 (2006).

    Article  Google Scholar 

  108. Centola, D. & Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).

    Article  Google Scholar 

  109. Lehmann, S. & Ahn, Y.-Y. (eds) Complex Spreading Phenomena in Social Systems (Springer, 2018).

  110. Guilbeault, D., Becker, J. & Centola, D. in Complex Spreading Phenomena in Social Systems (eds Lehmann, S. & Ahn, Y.-Y.) 3–25 (Springer, 2018).

  111. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).

    Article  Google Scholar 

  112. Watts, D. J. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 99, 5766–5771 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Weidlich, W. The statistical description of polarization phenomena in society. Br. J. Math. Stat. Psychol. 24, 251–266 (1971).

    Article  Google Scholar 

  114. Clifford, P. & Sudbury, A. A model for spatial conflict. Biometrika 60, 581–588 (1973).

    Article  Google Scholar 

  115. Galam, S. Minority opinion spreading in random geometry. Eur. Phys. J. B 25, 403–406 (2002).

    Article  CAS  Google Scholar 

  116. Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Backstrom, L., Huttenlocher, D., Kleinberg, J. & Lan, X. Group formation in large social networks: membership, growth, and evolution. In Proc. 12th ACM SIGKDD International Conference 44–54 (2006).

  118. Romero, D. M., Meeder, B. & Kleinberg, J. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proc. 20th International Conference on World Wide Web 695–704 (ACM, 2011).

  119. Ugander, J., Backstrom, L., Marlow, C. & Kleinberg, J. Structural diversity in social contagion. Proc. Natl Acad. Sci. USA 109, 5962–5966 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Weng, L., Menczer, F. & Ahn, Y.-Y. Virality prediction and community structure in social networks. Sci. Rep. 3, 2522 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ruan, Z., Iniguez, G., Karsai, M. & Kertész, J. Kinetics of social contagion. Phys. Rev. Lett. 115, 218702 (2015).

    Article  PubMed  Google Scholar 

  122. Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. Evidence of complex contagion of information in social media: an experiment using Twitter bots. PLoS ONE 12, e0184148 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591 (2009).

    Article  Google Scholar 

  124. Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Iacopini, I., Petri, G., Baronchelli, A. & Barrat, A. Group interactions modulate critical mass dynamics in social convention. Commun. Phys. 5, 64 (2022).

    Article  Google Scholar 

  126. Matamalas, J. T., Gómez, S. & Arenas, A. Abrupt phase transition of epidemic spreading in simplicial complexes. Phys. Rev. Res. 2, 012049 (2020).

    Article  CAS  Google Scholar 

  127. de Arruda, G. F., Petri, G. & Moreno, Y. Social contagion models on hypergraphs. Phys. Rev. Res. 2, 023032 (2020).

    Article  PubMed Central  Google Scholar 

  128. Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. Chaos Interdiscip. J. Nonlinear Sci. 30, 103117 (2020).

    Article  CAS  Google Scholar 

  129. Nowak, M. A. & Highfield, R. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Free Press, 2011).

  130. Pennisi, E. How did cooperative behavior evolve? Science 309, 93–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).

    Article  Google Scholar 

  132. Sigmund, K. Punish or perish? Retaliation and collaboration among humans. Trends Ecol. Evol. 22, 593–600 (2007).

    Article  PubMed  Google Scholar 

  133. Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Milinski, M., Semmann, D., Bakker, T. C. M. & Krambeck, H.-J. Cooperation through indirect reciprocity: image scoring or standing strategy? Proc. R. Soc. Lond. B 268, 2495–2501 (2001).

    Article  CAS  Google Scholar 

  135. Nax, H. H., Perc, M., Szolnoki, A. & Helbing, D. Stability of cooperation under image scoring in group interactions. Sci. Rep. 5, 12145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fehr, E. Don’t lose your reputation. Nature 432, 449–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Gächter, S. Reputation and reciprocity: consequences for the labour relation. Scand. J. Econ. 104, 1–26 (2002).

    Article  Google Scholar 

  138. Fu, F., Hauert, C., Nowak, M. A. & Wang, L. Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78, 026117 (2008).

    Article  Google Scholar 

  139. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Santos, F. C., Pacheco, J. M. & Lenaerts, T. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl Acad. Sci. USA 103, 3490–3494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Santos, F. C., Rodrigues, J. F. & Pacheco, J. M. Graph topology plays a determinant role in the evolution of cooperation. Proc. R. Soc. B 273, 51–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Santos, F. C., Santos, M. D. & Pacheco, J. M. Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 213–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M. & Moreno, Y. Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10, 20120997 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Battiston, F., Perc, M. & Latora, V. Determinants of public cooperation in multiplex networks. N. J. Phys. 19, 073017 (2017).

    Article  Google Scholar 

  145. Szolnoki, A., Perc, M. & Szabó, G. Topology-independent impact of noise on cooperation in spatial public goods games. Phys. Rev. E 80, 056109 (2009).

    Article  Google Scholar 

  146. Szolnoki, A. & Perc, M. Group-size effects on the evolution of cooperation in the spatial public goods game. Phys. Rev. E 84, 047102 (2011).

    Article  Google Scholar 

  147. Alvarez-Rodriguez, U. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat. Hum. Behav. 5, 586–595 (2021).

    Article  PubMed  Google Scholar 

  148. Burgio, G., Matamalas, J. T., Gómez, S. & Arenas, A. Evolution of cooperation in the presence of higher-order interactions: from networks to hypergraphs. Entropy 22, 744 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hauert, C., Michor, F., Nowak, M. A. & Doebeli, M. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol. 239, 195–202 (2006).

    Article  PubMed  Google Scholar 

  150. Peña, J., Wu, B., Arranz, J. & Traulsen, A. Evolutionary games of multiplayer cooperation on graphs. PLoS Comput. Biol. 12, e1005059 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Sheng, A., Su, Q., Wang, L. & Plotkin, J. B. Strategy evolution on higher-order networks. Nat. Comput. Sci. 4, 274–284 (2024).

    Article  PubMed  Google Scholar 

  152. Wang, C., Perc, M. & Szolnoki, A. Evolutionary dynamics of any multiplayer game on regular graphs. Nat. Commun. 15, 5349 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Guo, H. et al. Evolutionary games on simplicial complexes. Chaos Solitons Fractals 150, 111103 (2021).

    Article  Google Scholar 

  154. Civilini, A., Anbarci, N. & Latora, V. Evolutionary game model of group choice dilemmas on hypergraphs. Phys. Rev. Lett. 127, 268301 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Civilini, A., Sadekar, O., Battiston, F., Gómez-Gardeñes, J. & Latora, V. Explosive cooperation in social dilemmas on higher-order networks. Phys. Rev. Lett. 132, 167401 (2024).

    Article  CAS  PubMed  Google Scholar 

  156. Sadekar, O., Civilini, A., Latora, V. & Battiston, F. Drivers of cooperation in social dilemmas on higher-order networks. J. R. Soc. Interface 22, 20250134 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Nowak, M. A. Evolutionary Dynamics (Harvard Univ. Press, 2006).

  158. Hammond, R. A. & Axelrod, R. The evolution of ethnocentrism. J. Confl. Resolut. 50, 926–936 (2006).

    Article  Google Scholar 

  159. Choi, J.-K. & Bowles, S. The coevolution of parochial altruism and war. Science 318, 636–640 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Jordan, M. R., Jordan, J. J. & Rand, D. G. No unique effect of intergroup competition on cooperation: non-competitive thresholds are as effective as competitions between groups for increasing human cooperative behavior. Evol. Hum. Behav. 38, 102–108 (2017).

    Article  Google Scholar 

  161. Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 7, 12285 (2017).

    Article  Google Scholar 

  162. Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Nagel, T. Moral conflict and political legitimacy. Phil. Public Aff. 16, 215–240 (1987).

    Google Scholar 

  165. Pearce, W. B. & Littlejohn, S. W. Moral Conflict: When Social Worlds Collide (Sage, 1997).

  166. Bartos, O. J. & Wehr, P. Using Conflict Theory (Cambridge Univ. Press, 2002).

  167. Capraro, V. & Perc, M. Grand challenges in social physics: in pursuit of moral behavior. Front. Phys. 6, 107 (2018).

    Article  Google Scholar 

  168. Hendrick, S. S. Self-disclosure and marital satisfaction. J. Pers. Soc. Psychol. 40, 1150–1159 (1981).

    Article  Google Scholar 

  169. Argyle, M. & Henderson, M. The rules of friendship. J. Soc. Pers. Relat. 1, 211–237 (1984).

    Article  Google Scholar 

  170. Gravelle, J. Tax Havens: International Tax Avoidance and Evasion (DIANE, 2010).

  171. Tennyson, S. Moral, social, and economic dimensions of insurance claims fraud. Soc. Res. 75, 1181–1204 (2008).

    Article  Google Scholar 

  172. Pennycook, G., Cannon, T. D. & Rand, D. G. Prior exposure increases perceived accuracy of fake news. J. Exp. Psychol. Gen. 147, 1865–1880 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Fischbacher, U. & Föllmi-Heusi, F. Lies in disguise—an experimental study on cheating. J. Eur. Econ. Assoc. 11, 525–547 (2013).

    Article  Google Scholar 

  174. Mazar, N., Amir, O. & Ariely, D. The dishonesty of honest people: a theory of self-concept maintenance. J. Mark. Res. 45, 633–644 (2008).

    Article  Google Scholar 

  175. Maynard Smith, J. Honest signalling: the Philip Sidney game. Anim. Behav. 42, 1034–1035 (1991).

    Article  Google Scholar 

  176. Gneezy, U. Deception: the role of consequences. Am. Econ. Rev. 95, 384–394 (2005).

    Article  Google Scholar 

  177. Smith, D. et al. Cooperation and the evolution of hunter-gatherer storytelling. Nat. Commun. 8, 1853 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Marett, L. K. & George, J. F. Deception in the case of one sender and multiple receivers. Group Decis. Negot. 13, 29–44 (2004).

    Article  Google Scholar 

  179. Zhou, L., Wu, J. & Zhang, D. Discourse cues to deception in the case of multiple receivers. Inf. Manage. 51, 726–737 (2014).

    Google Scholar 

  180. Skyrms, B. Evolution of signalling systems with multiple senders and receivers. Phil. Trans. R. Soc. B 364, 771–779 (2009).

    Article  PubMed  Google Scholar 

  181. Capraro, V., Perc, M. & Vilone, D. The evolution of lying in well-mixed populations. J. R. Soc. Interface 16, 20190211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Capraro, V., Perc, M. & Vilone, D. Lying on networks: the role of structure and topology in promoting honesty. Phys. Rev. E 101, 032305 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Kumar, A., Chowdhary, S., Capraro, V. & Perc, M. Evolution of honesty in higher-order social networks. Phys. Rev. E 104, 054308 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Li, W., Zhu, Y. & Xia, C. Evolutionary dynamics of n-player sender–receiver game in networks with community structure. Chaos Interdiscip. J. Nonlinear Sci. 33, 103117 (2023).

    Article  Google Scholar 

  185. Kimbrough, E. O. & Vostroknutov, A. Norms make preferences social. J. Eur. Econ. Assoc. 14, 608–638 (2016).

    Article  Google Scholar 

  186. Capraro, V. & Rand, D. G. Do the right thing: experimental evidence that preferences for moral behavior, rather than equity or efficiency per se, drive human prosociality. Judgm. Decis. Mak. 13, 99–111 (2018).

    Article  Google Scholar 

  187. Eriksson, K., Strimling, P., Andersson, P. A. & Lindholm, T. Costly punishment in the ultimatum game evokes moral concern, in particular when framed as payoff reduction. J. Exp. Soc. Psychol. 69, 59–64 (2017).

    Article  Google Scholar 

  188. Haidt, J. & Joseph, C. Intuitive ethics: how innately prepared intuitions generate culturally variable virtues. Daedalus 133, 55–66 (2004).

    Article  Google Scholar 

  189. Iyer, R., Koleva, S., Graham, J., Ditto, P. & Haidt, J. Understanding libertarian morality: the psychological dispositions of self-identified libertarians. PLoS ONE 7, e42366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Curry, O. S. in The Evolution of Morality (eds Shackelford, T. K. & Hansen, R. D.) 27–51 (Springer, 2016).

  191. Curry, O., Whitehouse, H. & Mullins, D. Is it good to cooperate? Testing the theory of morality-as-cooperation in 60 societies. Curr. Anthropol. 60, 47–69 (2019).

    Article  Google Scholar 

  192. Page, K. M., Nowak, M. A. & Sigmund, K. The spatial ultimatum game. Proc. R. Soc. Lond. B 267, 2177–2182 (2000).

    Article  CAS  Google Scholar 

  193. Kuperman, M. & Risau-Gusman, S. The effect of the topology on the spatial ultimatum game. Eur. Phys. J. B 62, 233–238 (2008).

    Article  CAS  Google Scholar 

  194. Deng, L., Tang, W. & Zhang, J. The coevolutionary ultimatum game on different network topologies. Phys. A 390, 4227–4235 (2011).

    Article  Google Scholar 

  195. Zheng, L., Li, Y., Zhou, J. & Li, Y. The effect of celebrity on the evolution of fairness in the ultimatum game. Phys. A 585, 126326 (2022).

    Article  Google Scholar 

  196. Yang, Z. Role polarization and its effects in the spatial ultimatum game. Phys. Rev. E 108, 024106 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Deng, L., Wang, H., Wang, R., Xu, R. & Wang, C. The adaptive adjustment of node weights based on reputation and memory promotes fairness. Chaos Solitons Fractals 180, 114591 (2024).

    Article  Google Scholar 

  198. Van Segbroeck, S., Santos, F. C., Nowé, A., Pacheco, J. M. & Lenaerts, T. The coevolution of loyalty and cooperation. In 2009 IEEE Congress on Evolutionary Computation 500–505 (IEEE, 2009).

  199. Fu, F. et al. Evolution of in-group favoritism. Sci. Rep. 2, 460 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Whitaker, R. M., Colombo, G. B. & Rand, D. G. Indirect reciprocity and the evolution of prejudicial groups. Sci. Rep. 8, 13247 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Fu, M., Wang, J., Cheng, L. & Chen, L. Promotion of cooperation with loyalty-based reward in the spatial prisoner’s dilemma game. Phys. A 580, 125672 (2021).

    Article  Google Scholar 

  202. Fu, M., Guo, W., Cheng, L., Huang, S. & Chen, D. History loyalty-based reward promotes cooperation in the spatial public goods game. Phys. A 525, 1323–1329 (2019).

    Article  Google Scholar 

  203. Martinez-Vaquero, L. A. Inequality leads to the evolution of intolerance in reputation-based populations. Chaos Interdiscip. J. Nonlinear Sci. 33, 033119 (2023).

    Article  Google Scholar 

  204. Chica, M., Chiong, R., Ramasco, J. J. & Abbass, H. Effects of update rules on networked n-player trust game dynamics. Commun. Nonlinear Sci. Numer. Simul. 79, 104870 (2019).

    Article  Google Scholar 

  205. Kumar, A., Capraro, V. & Perc, M. The evolution of trust and trustworthiness. J. R. Soc. Interface 17, 20200491 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Lim, I. S. Stochastic evolutionary dynamics of trust games with asymmetric parameters. Phys. Rev. E 102, 062419 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Hu, Z. et al. Adaptive reputation promotes trust in social networks. IEEE Trans. Netw. Sci. Eng. 8, 3087–3098 (2021).

    Article  Google Scholar 

  208. Liu, L. & Chen, X. Conditional investment strategy in evolutionary trust games with repeated group interactions. Inf. Sci. 609, 1694–1705 (2022).

    Article  Google Scholar 

  209. Meylahn, B. V., den Boer, A. V. & Mandjes, M. Interpersonal trust: asymptotic analysis of a stochastic coordination game with multi-agent learning. Chaos Interdiscip. J. Nonlinear Sci. 34, 063119 (2024).

    Article  Google Scholar 

  210. Wang, C. Evolution of trust in structured populations. Appl. Math. Comput. 471, 128595 (2024).

    Google Scholar 

  211. Zhou, C., Zhu, Y., Zhao, D. & Xia, C. An evolutionary trust game model with group reputation within the asymmetric population. Chaos Solitons Fractals 184, 115031 (2024).

    Article  Google Scholar 

  212. Kosfeld, M. Economic networks in the laboratory: a survey. Rev. Netw. Econ. 3, 20–41 (2004).

    Article  Google Scholar 

  213. Jackson, M. Social and Economic Networks (Princeton Univ. Press, 2008).

  214. Choi, S., Gallo, E. & Kariv, S. Networks in the Laboratory (Cambridge Working Papers in Economics) (Faculty of Economics, Univ. Cambridge, 2015).

  215. Cassar, A. Coordination and cooperation in local, random and small world networks: experimental evidence. Games Econ. Behav. 58, 209–230 (2007).

    Article  Google Scholar 

  216. Kearns, M., Judd, S. & Wortman, J. Behavioral experiments on biased voting in networks. Proc. Natl Acad. Sci. USA 106, 1347–1352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Duffy, J., Lai, E. K. & Lim, W. Coordination via correlation: an experimental study. Econ. Theory 64, 265–304 (2017).

    Article  Google Scholar 

  218. Bramoullé, Y., Kranton, R. & D’Amours, M. Strategic interaction and networks. Am. Econ. Rev. 104, 898–930 (2014).

    Article  Google Scholar 

  219. Sánchez, A. Physics of human cooperation: experimental evidence and theoretical models. J. Stat. Mech. Theory Exp. 2018, 024001 (2018).

    Article  Google Scholar 

  220. Han, X. et al. Equal status in ultimatum games promotes rational sharing. Sci. Rep. 8, 1222 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Cardoso, F. M. et al. Effect of network topology and node centrality on trading. Sci. Rep. 10, 11113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ledyard, J. O. in The Handbook of Experimental Economics (eds Kagel, J. H. & Roth, A. E.) 111–194 (Princeton Univ. Press, 1997).

  223. Fischbacher, U. & Gächter, S. Social preferences, beliefs and the dynamics of free riding in public goods experiments. Am. Econ. Rev. 100, 541–556 (2010).

    Article  Google Scholar 

  224. Grujić, J., Fosco, C., Araujo, L., Cuesta, J. A. & Sánchez, A. Social experiments in the mesoscale: humans playing a spatial prisoner’s dilemma. PLoS ONE 5, e13749 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Gracia-Lázaro, C. et al. Heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. Proc. Natl Acad. Sci. USA 109, 12922–12926 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Salvato, C., Reuer, J. J. & Battigalli, P. Cooperation across disciplines: a multilevel perspective on cooperative behavior in governing interfirm relations. Acad. Manage. Ann. 11, 960–1046 (2017).

    Article  Google Scholar 

  227. Kessler, J. B., Low, C. & Singhal, M. Social policy instruments and the compliance environment. J. Econ. Behav. Organ. 192, 248–267 (2021).

    Article  Google Scholar 

  228. Bossey, L. A. Conditional cooperation in network public goods experiments. J. Behav. Exp. Econ. 69, 108–116 (2017).

    Article  Google Scholar 

  229. Pereda, M. A. et al. Large scale and information effects on public goods games. Sci. Rep. 9, 15023 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Grujić, J., Cuesta, J. A. & Sánchez, A. On the coexistence of cooperators, defectors and conditional cooperators in the multiplayer iterated prisoner’s dilemma. J. Theor. Biol. 300, 299–308 (2012).

    Article  PubMed  Google Scholar 

  231. Pereda, M. A., Capraro, V. & Sánchez, A. Group size effects and critical mass in public good games. Sci. Rep. 9, 5503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Broere, J., Buskens, V., Stoof, H. & Sánchez, A. An experimental study of network effects on coordination in asymmetric games. Sci. Rep. 9, 6842 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Zhang, Y. & HE, L. Theory and experiments on network games of public goods: inequality aversion and welfare preference. J. Econ. Behav. Organ. 190, 326–347 (2021).

    Article  Google Scholar 

  234. Young, J.-G., Petri, G. & Peixoto, T. P. Hypergraph reconstruction from network data. Commun. Phys. 4, 135 (2021).

    Article  Google Scholar 

  235. Kirkley, A. Inference of dynamic hypergraph representations in temporal interaction data. Phys. Rev. E 109, 054306 (2024).

    Article  CAS  PubMed  Google Scholar 

  236. Sales-Pardo, M., Mariné-Tena, A. & Guimerà, R. Hyperedge prediction and the statistical mechanisms of higher-order and lower-order interactions in complex networks. Proc. Natl Acad. Sci. USA 120, e2303887120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Torres, L., Blevins, A. S., Bassett, D. & Eliassi-Rad, T. The why, how, and when of representations for complex systems. SIAM Rev. 63, 435–485 (2021).

    Article  Google Scholar 

  238. Lee, G., Bu, F., Eliassi-Rad, T. & Shin, K. A survey on hypergraph mining: patterns, tools, and generators. ACM Comput. Surv. 57, 203 (2025).

    Article  Google Scholar 

  239. LaRock, T. & Lambiotte, R. Encapsulation structure and dynamics in hypergraphs. J. Phys. Complex. 4, 045007 (2023).

    Article  Google Scholar 

  240. Neuhäuser, L., Scholkemper, M., Tudisco, F. & Schaub, M. T. Learning the effective order of a hypergraph dynamical system. Sci. Adv. 10, eadh4053 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Reducibility of higher-order networks via information flow. Preprint at https://doi.org/10.48550/arXiv.2404.08547 (2024).

  242. Young, J.-G., Petri, G., Vaccarino, F. & Patania, A. Construction of and efficient sampling from the simplicial configuration model. Phys. Rev. E 96, 032312 (2017).

    Article  PubMed  Google Scholar 

  243. Chodrow, P. S. Configuration models of random hypergraphs. J. Complex Netw. 8, cnaa018 (2020).

    Article  Google Scholar 

  244. Musciotto, F., Battiston, F. & Mantegna, R. N. Detecting informative higher-order interactions in statistically validated hypergraphs. Commun. Phys. 4, 218 (2021).

    Article  Google Scholar 

  245. Saracco, F., Petri, G., Lambiotte, R. & Squartini, T. Entropy-based random models for hypergraphs. Commun. Phys. 8, 284 (2025).

    Article  Google Scholar 

  246. Preti, G., Fazzone, A., Petri, G. & De Francisci Morales, G. Higher-order null models as a lens for social systems. Phys. Rev. X 14, 031032 (2024).

    CAS  Google Scholar 

  247. Karimi, F., Génois, M., Wagner, C., Singer, P. & Strohmaier, M. Homophily influences ranking of minorities in social networks. Sci. Rep. 8, 11077 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Espín-Noboa, L., Wagner, C., Strohmaier, M. & Karimi, F. Inequality and inequity in network-based ranking and recommendation algorithms. Sci. Rep. 12, 2012 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Ntoutsi, E. et al. Bias in data-driven artificial intelligence systems—an introductory survey. WIREs Data Min. Knowl. Discov. 10, e1356 (2020).

    Article  Google Scholar 

  250. Feng, D., Altmeyer, R., Stafford, D., Christakis, N. A. & Zhou, H. H. Testing for balance in social networks. J. Am. Stat. Assoc. 117, 156–174 (2022).

    Article  CAS  Google Scholar 

  251. Cinardi, N. & Karimi, F. Inequality of opportunities creates structural marginalization in networks. Preprint at SocArXiv https://doi.org/10.31235/osf.io/sp8kn (2024).

  252. Neuhäuser, L., Karimi, F., Bachmann, J., Strohmaier, M. & Schaub, M. T. Improving the visibility of minorities through network growth interventions. Commun. Phys. 6, 108 (2023).

    Article  Google Scholar 

  253. Wu, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt science and technology. Nature 566, 378–382 (2019).

    Article  CAS  PubMed  Google Scholar 

  254. Humphrey, S. E. & Aime, F. Team microdynamics: toward an organizing approach to teamwork. Acad. Manage. Ann. 8, 443–503 (2014).

    Article  Google Scholar 

  255. Betti, L., Gallo, L., Wachs, J. & Battiston, F. The dynamics of leadership and success in software development teams. Nat. Commun. 16, 3956 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. O. Szabo, R., Chowdhary, S., Deritei, D. & Battiston, F. The anatomy of social dynamics in escape rooms. Sci. Rep. 12, 10498 (2022).

    Article  CAS  PubMed  Google Scholar 

  257. Uzzi, B. The sources and consequences of embeddedness for the economic performance of organizations: the network effect. Am. Sociol. Rev. 61, 674–698 (1996).

    Article  Google Scholar 

  258. Burt, R. S. Structural holes and good ideas. Am. J. Sociol. 110, 349–399 (2004).

    Article  Google Scholar 

  259. Merton, R. K. The Matthew effect in science. Science 159, 56–63 (1968).

    Article  CAS  PubMed  Google Scholar 

  260. Vinicius, L., Rizzo, L., Battiston, F. & Migliano, A. B. Cultural evolution, social ratcheting and the origins of human division of labour. Phil. Trans. R. Soc. B (in the press).

  261. Migliano, A. B. et al. Hunter-gatherer multilevel sociality accelerates cumulative cultural evolution. Sci. Adv. 6, eaax5913 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Reyes-García, V. et al. Multilevel processes and cultural adaptation: examples from past and present small-scale societies. Ecol. Soc. 21, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Migliano, A. B. et al. Characterization of hunter-gatherer networks and implications for cumulative culture. Nat. Hum. Behav. 1, 0043 (2017).

    Article  Google Scholar 

  264. Migliano, A. B. & Vinicius, L. The origins of human cumulative culture: from the foraging niche to collective intelligence. Phil. Trans. R. Soc. B 377, 20200317 (2022).

    Article  PubMed  Google Scholar 

  265. Salali, G. D. et al. Knowledge-sharing networks in hunter-gatherers and the evolution of cumulative culture. Curr. Biol. 26, 2516–2521 (2016).

    Article  CAS  PubMed  Google Scholar 

  266. Derex, M. & Boyd, R. Partial connectivity increases cultural accumulation within groups. Proc. Natl Acad. Sci. USA 113, 2982–2987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Koster, J. et al. Kinship ties across the lifespan in human communities. Phil. Trans. R. Soc. B 374, 20180069 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Smolla, M. & Akçay, E. Cultural selection shapes network structure. Sci. Adv. 5, eaaw0609 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Muthukrishna, M. & Henrich, J. Innovation in the collective brain. Phil. Trans. R. Soc. B 371, 20150192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Tomasello, M. Origins of Human Communication (MIT Press, 2010).

  271. Fedorenko, E., Piantadosi, S. T. & Gibson, E. A. Language is primarily a tool for communication rather than thought. Nature 630, 575–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  272. Baronchelli, A., Felici, M., Loreto, V., Caglioti, E. & Steels, L. Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech. Theory Exp. 2006, P06014 (2006).

    Article  Google Scholar 

  273. Puglisi, A., Baronchelli, A. & Loreto, V. Cultural route to the emergence of linguistic categories. Proc. Natl Acad. Sci. USA 105, 7936–7940 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Danovski, K. & Brede, M. On the evolutionary language game in structured and adaptive populations. PLoS ONE 17, e0273608 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Wu, H. et al. Agent-network-computation-based evolutionary game model in language competition. IEEE Trans. Comput. Soc. Systems 11, 4226–4241 (2024).

    Article  Google Scholar 

  276. Giles, H., Bourhis, R. Y., & Taylor, D. in Language, Ethnicity and Intergroup Relations (ed. Giles, H.) 307–348 (Academic Press, 1977).

  277. Capraro, V., Halpern, J. Y. & Perc, M. From outcome-based to language-based preferences. J. Econ. Lit. 62, 115–154 (2024).

    Article  Google Scholar 

  278. Clark, R. Meaningful Games: Exploring Language with Game Theory (MIT Press, 2023).

  279. Gaffal, M. & Padilla Gálvez, J. Dynamics of Rational Negotiation: Game Theory, Language Games and Forms of Life (Springer, 2024).

  280. Vlasceanu, M. et al. Addressing climate change with behavioral science: a global intervention tournament in 63 countries. Sci. Adv. 10, eadj5778 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Brodie Rudolph, T. et al. A transition to sustainable ocean governance. Nat. Commun. 11, 3600 (2020).

    Article  PubMed  Google Scholar 

  282. Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Milkman, K. L. et al. Megastudies improve the impact of applied behavioural science. Nature 600, 478–483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Milkman, K. L. et al. Megastudy shows that reminders boost vaccination but adding free rides does not. Nature 631, 179–188 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Saccardo, S. et al. Field testing the transferability of behavioural science knowledge on promoting vaccinations. Nat. Hum. Behav. 8, 878–890 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Airoldi, E. M. & Christakis, N. A. Induction of social contagion for diverse outcomes in structured experiments in isolated villages. Science 384, eadi5147 (2024).

    Article  CAS  PubMed  Google Scholar 

  287. Landry, N. W., Young, J.-G. & Eikmeier, N. The simpliciality of higher-order networks. EPJ Data Sci. 13, 17 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Lotito for helping with the curation of the arXiv dataset as well as for discussions regarding the computational challenges of higher-order networks. F.B. acknowledges support from the Austrian Science Fund (FWF) through the project 10.55776/PAT1052824 and 10.55776/PAT1652425, and from the Air Force Office of Scientific Research under award number FA8655-22-1-7025. F.K. acknowledges ERC Starting grant no. 101165497. A.B.M. acknowledges SNSF grant number:10001620. A.S. acknowledges support from project PID2022-141802NB-I00 (BASIC) funded by MCIN/AEI/10.13039/501100011033 and by ‘ERDF A way of making Europe’, and from grant MapCDPerNets—Programa Fundamentos de la Fundación BBVA 2022. M.P. acknowledges support from the Slovenian Research Agency (grant no. P1-0403).

Author information

Authors and Affiliations

Authors

Contributions

F.B. and M.P. conceived the idea. F.B. and O.S. conceptualized the figures and data analysis for the box. O.S. created the figures and analysed the empirical dataset for the box. All authors contributed to writing, editing and reviewing the manuscript.

Corresponding author

Correspondence to Federico Battiston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Francisco Rodrigues, Anzhi Sheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battiston, F., Capraro, V., Karimi, F. et al. Higher-order interactions shape collective human behaviour. Nat Hum Behav 9, 2441–2457 (2025). https://doi.org/10.1038/s41562-025-02373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02373-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing