Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

X-ray detector

Let ions move

Ion migration under an electric field in a preconditioning process leads to highly efficient and stable bromide perovskite single-crystal X-ray photon-counting detectors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of ER in commercial and halide perovskite X-ray spectroscopic detectors.

References

  1. Yakunin, S. et al. Nat. Photon. 9, 444–449 (2015).

    Article  CAS  Google Scholar 

  2. Kim, Y. C. et al. Nature 550, 87–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Y. et al. Nat. Commun. 12, 1686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang, J. et al. Nat. Photon. 16, 575–581 (2022).

    Article  CAS  Google Scholar 

  5. Li, M. et al. Nat. Mater. https://doi.org/10.1038/s41563-025-02310-x (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  6. He, Y., Hadar, I. & Kanatzidis, M. G. Nat. Photon. 16, 14–26 (2022).

    Article  CAS  Google Scholar 

  7. Hua, Y. et al. Nat. Photon. 18, 870–877 (2024).

    Article  CAS  Google Scholar 

  8. Pan, W. et al. Nat. Commun. 15, 257 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones, L. T. & Woollam, P. B. Nucl. Instrum. Methods 124, 591–595 (1975).

    Article  CAS  Google Scholar 

  10. Hazlett, T. et al. IEEE Trans. Nucl. Sci. 33, 332–335 (1986).

    Article  Google Scholar 

  11. Richter, M. & Siffert, P. Nucl. Instrum. Methods Phys. Res. A 322, 529–537 (1992).

    Article  Google Scholar 

  12. Luke, P. N., Amman, M., Lee, J. S., Ludewigt, B. A. & Yaver, H. Nucl. Instrum. Methods Phys. Res. A 458, 319–324 (2001).

    Article  CAS  Google Scholar 

  13. Zhu, Y. & He, Z. In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) 4109–4112 (IEEE, 2012); https://doi.org/10.1109/NSSMIC.2012.6551939

  14. Prokesch, M., Soldner, S. A. & Sundaram, A. G. J. Appl. Phys. 124, 044503 (2018).

    Article  Google Scholar 

  15. Wei, H. et al. Nat. Mater. 16, 826–833 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. He, Y. et al. Nat. Commun. 9, 1609 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao, L. et al. Nat. Photon. 17, 315–323 (2023).

    CAS  Google Scholar 

  18. Zhao, L. et al. Nat. Photon. 18, 250–257 (2024).

    Article  CAS  Google Scholar 

  19. He, Y. et al. Nat. Photon. 15, 36–42 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianpu Wang or Rong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, R. Let ions move. Nat. Mater. 24, 1871–1872 (2025). https://doi.org/10.1038/s41563-025-02324-5

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02324-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing