Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermediate phase evolution for stable and oriented evaporated wide-bandgap perovskite solar cells

Abstract

Efficient wide-bandgap perovskite solar cells have pushed tandem efficiencies to 34.9%, reinforcing their promise for next-generation photovoltaics. However, their commercial adoption is hindered by stability issues of wide-bandgap perovskites, especially under high-temperature maximum power point tracking conditions. Here we report the stabilization of ~1.7-eV wide-bandgap perovskites via intermediate phase evolution, enabling a self-guided crystal-growth mode. A CsI2Br intermediate phase forms during early stage deposition, directing the oriented growth of polycrystalline films with unique texturing. Atomic-scale scanning transmission electron microscopy reveals that the CsI2Br \((1\bar{2}3)\) facet, with a 2.9-Å interplanar spacing, matches the perovskite (200) facet, guiding coherent {100} growth. This results in enhanced crystallinity, with a 2-order-magnitude increase in the (100) diffraction intensity and a reduced full-width at half-maximum from 0.249° to 0.148°, compared with solution-processed films. The resulting solar cells exhibit outstanding thermal and operational stability, maintaining performance under maximum power point tracking for over 3,000 h at room temperature and over 500 h at 110 °C, with a projected lifetime of ~70,000 h. With 21.37% power conversion efficiency and >84% fill factor, this work presents a compelling route towards stable, high-efficiency tandem photovoltaics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomic-scale high-resolution STEM images and SCG induced by CsI2Br intermediate phase.
Fig. 2: Structural evolution of perovskites under thermal stress revealed by STEM.
Fig. 3: Revealing facet-dependent thermal degradation pathway.
Fig. 4: Projecting operational lifetime of perovskites with SCG in different environments.

Similar content being viewed by others

Data availability

The data supporting this study are included in the article and its Supplementary Information. Further information are available from the corresponding authors on request.

References

  1. Ramadan, A. J., Oliver, R. D. J., Johnston, M. B. & Snaith, H. J. Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8, 822–838 (2023).

    Article  CAS  Google Scholar 

  2. Fu, F. et al. Monolithic perovskite-silicon tandem solar cells: from the lab to fab?. Adv. Mater. 34, 2106540 (2022).

    Article  CAS  Google Scholar 

  3. Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    Article  CAS  Google Scholar 

  6. Cheng, Y. & Ding, L. Perovskite/Si tandem solar cells: fundamentals, advances, challenges, and novel applications. SusMat 1, 324–344 (2021).

    Article  CAS  Google Scholar 

  7. Ji, X. et al. Multifunctional buffer layer engineering for efficient and stable wide-bandgap perovskite and perovskite/silicon tandem solar cells. Angew. Chem. Int. Ed. 136, e202407766 (2024).

    Article  Google Scholar 

  8. Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Khadka, D. B. et al. Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding. Nat. Commun. 15, 882 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye, Q. et al. Suppressing charge recombination in a methylammonium-free wide-bandgap perovskite film for high-performance and stable perovskite solar cells. Energy Environ. Sci. 17, 5866–5875 (2024).

    Article  CAS  Google Scholar 

  11. Chen, S. et al. Crystallization in one-step solution deposition of perovskite films: upward or downward?. Sci. Adv. 7, eabb2412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, H. et al. Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI3-based perovskite solar cells over 24%. Adv. Mater. 34, 2204366 (2022).

    Article  CAS  Google Scholar 

  13. Kim, H.-S., Seo, J.-Y. & Park, N.-G. Material and device stability in perovskite solar cells. ChemSusChem 9, 2528–2540 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, C. et al. Photovoltaically top-performing perovskite crystal facets. Joule 6, 2626–2643 (2022).

    Article  CAS  Google Scholar 

  15. Li, X. et al. Bifunctional ligand-induced preferred crystal orientation enables highly efficient perovskite solar cells. Joule 8, 3169–3185 (2024).

    Article  CAS  Google Scholar 

  16. Zhao, W. et al. Orientation engineering via 2D seeding for stable 24.83% efficiency perovskite solar cells. Adv. Energy Mater. 13, 2204260 (2023).

    Article  CAS  Google Scholar 

  17. Jiang, X. et al. Top-down induced crystallization orientation toward highly efficient p-i-n perovskite solar cells. Adv. Mater. 36, 2313524 (2024).

    Article  CAS  Google Scholar 

  18. Luo, C. et al. Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022).

    Article  CAS  Google Scholar 

  19. Wang, T. et al. 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8, 2004315 (2021).

    Article  CAS  Google Scholar 

  20. Cao, J. et al. Enhanced performance of planar perovskite solar cells induced by van der Waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30, 2002358 (2020).

    Article  CAS  Google Scholar 

  21. Li, S. et al. Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635, 874–881 (2024).

    Article  PubMed  Google Scholar 

  22. Abzieher, T. et al. Vapor phase deposition of perovskite photovoltaics: short track to commercialization?. Energy Environ. Sci. 17, 1645–1663 (2024).

    Article  Google Scholar 

  23. Li, H. et al. Applications of vacuum vapor deposition for perovskite solar cells: a progress review. iEnergy 1, 434–452 (2022).

    Article  Google Scholar 

  24. Kosasih, F. U., Erdenebileg, E., Mathews, N., Mhaisalkar, S. G. & Bruno, A. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6, 2692–2734 (2022).

    Article  CAS  Google Scholar 

  25. Vaynzof, Y. The future of perovskite photovoltaics—thermal evaporation or solution processing?. Adv. Energy Mater. 10, 2003073 (2020).

    Article  CAS  Google Scholar 

  26. Kim, B.-S., Gil-Escrig, L., Sessolo, M. & Bolink, H. J. Deposition kinetics and compositional control of vacuum-processed CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 11, 6852–6859 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Kaya, I. C. et al. Crystal reorientation and amorphization induced by stressing efficient and stable P–I–N vacuum-processed MAPbI3 perovskite solar cells. Adv. Energy Sustain. Res. 2, 2000065 (2021).

    Article  CAS  Google Scholar 

  28. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    CAS  Google Scholar 

  29. Fu, J. A general approach to determine texture patterns using pole figure. J. Mater. Res. Technol. 14, 1284–1291 (2021).

    Article  CAS  Google Scholar 

  30. Luo, J. et al. Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. 9, 282–294 (2024).

    Article  CAS  Google Scholar 

  31. Li, J. et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17, 435–441 (2023).

    Article  CAS  Google Scholar 

  32. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  33. Carpenter, G. B. The crystal structure of CsI2Br. Acta Cryst. 20, 330–334 (1966).

    Article  CAS  Google Scholar 

  34. Darwent, B. d. Bond Dissociation Energies in Simple Molecules (National Bureau of Standards, 1970).

  35. Chen, Z. et al. Thermal stability and decomposition kinetics of mixed-cation halide perovskites. Phys. Chem. Chem. Phys. 25, 32966–32971 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Tay, D. J. J. et al. Understanding the mechanisms of methylammonium-induced thermal instability in mixed-FAMA perovskites. Small 21, 2403389 (2025).

    Article  CAS  Google Scholar 

  37. Zhuang, J., Wang, J. & Yan, F. Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15, 84 (2023).

    Article  CAS  Google Scholar 

  38. Francisco-López, A. et al. Phase diagram of methylammonium/formamidinium lead iodide perovskite solid solutions from temperature-dependent photoluminescence and Raman spectroscopies. J. Phys. Chem. C 124, 3448–3458 (2020).

    Article  Google Scholar 

  39. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  40. Long, M. et al. Abnormal synergetic effect of organic and halide ions on the stability and optoelectronic properties of a mixed perovskite via in situ characterizations. Adv. Mater. 30, 1801562 (2018).

    Article  Google Scholar 

  41. LaFollette, D. K. et al. Bromine incorporation affects phase transformations and thermal stability of lead halide perovskites. J. Am. Chem. Soc. 146, 18576–18585 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Steele, J. A. et al. How to GIWAXS: grazing incidence wide angle X-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 13, 2300760 (2023).

    Article  CAS  Google Scholar 

  43. Saha, R. A. et al. Oxygen-mediated (0D) Cs4PbX6 formation during open-air thermal processing improves inorganic perovskite solar cell performance. ACS Nano 18, 16994–17006 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Khanna, Y. P. & Taylor, T. J. Comments and recommendations on the use of the Avrami equation for physico-chemical kinetics. Polym. Eng. Sci. 28, 1042–1045 (1988).

    Article  CAS  Google Scholar 

  45. Thiesbrummel, J. et al. Ion-induced field screening as a dominant factor in perovskite solar cell operational stability. Nat. Energy 9, 664–676 (2024).

    Article  CAS  Google Scholar 

  46. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  47. Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Burlingame, Q. et al. Intrinsically stable organic solar cells under high-intensity illumination. Nature 573, 394–397 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Li, Y. et al. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat. Commun. 12, 5419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haillant, O., Dumbleton, D. & Zielnik, A. An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors. Sol. Energy Mater. Sol. Cells 95, 1889–1895 (2011).

    Article  CAS  Google Scholar 

  51. Kettle, J. et al. Using ISOS consensus test protocols for development of quantitative life test models in ageing of organic solar cells. Sol. Energy Mater. Sol. Cells 167, 53–59 (2017).

    Article  CAS  Google Scholar 

  52. Zhao, X. et al. Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment. Science 385, 433–438 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Khenkin, M. & Albrecht, S. The way to predict outdoor lifetime. Nat. Energy 9, 12–13 (2024).

    Article  Google Scholar 

  55. National Solar Radiation Database (NSRDB, 2024); https://nsrdb.nrel.gov/

  56. What is the potential of solar energy in Singapore? Energy Market Authority of Singapore https://www.ema.gov.sg/resources/faqs/energy-supply/solar/what-is-the-potential-of-solar-energy-in-singapore (2023).

  57. Chen, W. et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022).

    Article  CAS  Google Scholar 

  58. Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Cryst. 48, 510–519 (2015).

    Article  CAS  Google Scholar 

  59. Perdew, J. P. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.H. acknowledges support from the Agency for Science, Technology and Research (A*STAR) under its MTC IRG Grant (M23M6c0108). We are affiliated with the Solar Energy Research Institute of Singapore (SERIS), a research institute at the National University of Singapore (NUS). SERIS is supported by the NUS, the National Research Foundation Singapore (NRF), the Energy Market Authority of Singapore (EMA) and the Singapore Economic Development Board (EDB). We acknowledge that computational work involved in this research work is fully supported by NUS IT’s Research Computing group under grant number NUSREC-HPC-00001. J.A.S. acknowledges financial support from the Australian Research Council (DE230100173). We thank the staff of the BL11 NCD-SWEET beamline at ALBA Synchrotron for their assistance in recording the GIWAXS data.

Author information

Authors and Affiliations

Authors

Contributions

Z. Dong and Y.H. conceived the idea and designed the experiments. Y.H. directed and supervised the project. Z. Dong fabricated the PSCs and conducted stability tests under accelerated aging. J.H., Y.L. and M. Sui conducted the STEM characterization and data analysis. Z. Dong and X.G. investigated the thermal degradation mechanisms and conducted the material and device characterizations. Z.S. helped with the XRD measurement. Q.Z., T.W. and L.K.L. helped with the device fabrication. J.A.S., Z. Degnan and E.S. performed the in situ GIWAXS measurements. H.C. and Yunluo Wang helped with the pole figure measurements. R.L. contributed to the DFT simulations. J.C. helped with the XPS measurements. N.K. and M. Stolterfoht helped with the bias-assisted charge extraction measurement. J.L., N.L. and Yuduan Wang helped with the thermal evaporation of perovskite films. Z. Dong and Y.H. analysed the results and composed the paper. All authors discussed and polished the paper.

Corresponding authors

Correspondence to Yue Lu or Yi Hou.

Ethics declarations

Competing interests

Y.H. is the founder of Singfilm Solar, a company commercializing perovskite photovoltaics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Shangfeng Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Tables 1–6 and Notes 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Hu, J., Guo, X. et al. Intermediate phase evolution for stable and oriented evaporated wide-bandgap perovskite solar cells. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02375-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02375-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing