By harnessing the viscoplastic surface effect, researchers have created a stretchable hermetic seal that enables the reliable encapsulation of stretchable electronics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Sang, M., Kim, K., Shin, J. & Yu, K. J. Adv. Sci. 9, 2202980 (2022).
Le Floch, P., Meixuanzi, S., Tang, J., Liu, J. & Suo, Z. ACS Appl. Mater. Interfaces 10, 27333–27343 (2018).
Xia, R. et al. Nat. Mater. https://doi.org/10.1038/s41563-025-02386-5 (2025).
Shen, Q. et al. Science 379, 488–493 (2023).
Ochirkhuyag, N. et al. ACS Appl. Mater. Interfaces 14, 48123–48132 (2022).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Lee, H., Kang, J. Sealing stretchable electronics through a viscoplastic surface effect. Nat. Mater. 24, 1879–1880 (2025). https://doi.org/10.1038/s41563-025-02417-1
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41563-025-02417-1