Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insight into the assembly of the type II secretion system pilotin–secretin complex from enterotoxigenic Escherichia coli

Abstract

Secretin is a large outer-membrane channel found in secretion systems of Gram-negative bacteria, facilitating the last step for transfer of proteins into the extracellular environment. In the type II secretion system, a lipoprotein called pilotin is essential to bind and target its corresponding secretin to the outer membrane. However, there is only limited structural information available about the interaction and assembly of the pilotin–secretin complex. Here we report the first near-atomic-resolution structure of a full-length Vibrio-type pilotin–secretin (AspS–GspD) complex from enterotoxigenic Escherichia coli by cryo-electron microscopy, which reveals the detailed assembly mode of the full-length pilotin–secretin complex. The AspS subunits attach to the secretin channel surface with a 15:15 stoichiometric ratio to GspD subunits, and insert their amino terminus into the outer membrane. The AspS subunits interact with all three secondary structural elements of the S domain of GspD, including strong interaction with the carboxy-terminal α-helix and weak interactions with another two elements, an α-helix and a loop. These structural and biochemical details provide a deeper insight to pilotin–secretin interaction and their assembly mode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multimeric state of the ETEC AspS–GspD complex.
Fig. 2: Cryo-electron microscopy density maps of the AspS–GspD complex.
Fig. 3: Interactions between AspS and the S domain.
Fig. 4: Influences of GspD C-terminal mutations to the complex state of AspS–GspD.

Similar content being viewed by others

References

  1. Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Korotkov, K. V., Sandkvist, M. & Hol, W. G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10, 336–351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan, Z., Yin, M., Xu, D., Zhu, Y. & Li, X. Structural insights into the secretin translocation channel in the type II secretion system. Nat. Struct. Mol. Biol. 24, 177–183 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Filloux, A. The underlying mechanisms of type II protein secretion. Biochim Biophys. Acta 1694, 163–790 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Thanassi, D. G. & Hultgren, S. J. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr. Opin. Cell Biol. 12, 420–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Viarre, V. et al. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J. Biol. Chem. 284, 33815–33823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bose, N. & Taylor, R. K. Identification of a TcpC-TcpQ outer membrane complex involved in the biogenesis of the toxin-coregulated pilus of Vibrio cholerae. J. Bacteriol. 187, 2225–2232 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmidt, S. A. et al. Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic Escherichia coli . J. Bacteriol. 183, 4848–4859 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, N. T., Hung, M. N., Liao, C. T. & Lin, M. H. Subcellular location of XpsD, a protein required for extracellular protein secretion by Xanthomonas campestris pv. campestris. Microbiology 141(Pt 6), 1395–1406 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Korotkov, K. V., Gonen, T. & Hol, W. G. Secretins: dynamic channels for protein transport across membranes. Trends Biochem. Sci. 36, 433–443 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strozen, T. G., Li, G. & Howard, S. P. YghG (GspSβ) is a novel pilot protein required for localization of the GspSβ type II secretion system secretin of enterotoxigenic Escherichia coli. Infect. Immun. 80, 2608–2622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koo, J., Burrows, L. L. & Howell, P. L. Decoding the roles of pilotins and accessory proteins in secretin escort services. FEMS Microbiol. Lett. 328, 1–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Collin, S., Guilvout, I., Nickerson, N. N. & Pugsley, A. P. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin. Mol. Microbiol. 80, 655–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Dunstan, R. A. et al. Assembly of the type II secretion system such as found in Vibrio cholerae depends on the novel Pilotin AspS. PLoS Pathog. 9, e1003117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu, S., Rehman, S., Wang, X., Shevchik, V. E. & Pickersgill, R. W. Structural and functional insights into the pilotin-secretin complex of the type II secretion system. PLoS Pathog. 8, e1002531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nickerson, N. N. et al. Outer membrane targeting of secretin PulD protein relies on disordered domain recognition by a dedicated chaperone. J. Biol. Chem. 286, 38833–38843 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tosi, T. et al. Pilotin-secretin recognition in the type II secretion system of Klebsiella oxytoca. Mol. Microbiol. 82, 1422–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Rehman, S., Gu, S., Shevchik, V. E. & Pickersgill, R. W. Anatomy of secretin binding to the Dickeya dadantii type II secretion system pilotin. Acta Crystallogr D. Biol. Crystallogr 69, 1381–1386 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Okon, M. et al. Structural characterization of the type-III pilot-secretin complex from Shigella flexneri. Structure 16, 1544–1554 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Worrall, L. J. et al. Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body. Nature 540, 597–601 (2016).

    Article  CAS  Google Scholar 

  22. Das, D. et al. Crystal structure of a putative quorum sensing-regulated protein (PA3611) from the Pseudomonas-specific DUF4146 family. Proteins 82, 1086–1092 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U. & Bussow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).

    Article  Google Scholar 

  25. Li, X., Zheng, S., Agard, D. A. & Cheng, Y. Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage. J. Struct. Biol. 192, 174–178 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  28. Scheres, S. H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scheres, S. H. Classification of structural heterogeneity by maximum-likelihood methods. Methods Enzymol. 482, 295–320 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Shaikh, T. R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Korotkov, K. V., Pardon, E., Steyaert, J. & Hol, W. G. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17, 255–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, (213–221 (2010).

    Google Scholar 

  40. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. The PyMOL Molecular Graphics System v.1.8. (Schrödinger, LLC, 2015).

Download references

Acknowledgements

This work was supported by funds from The National Key Research and Development Program (2016YFA0501102 and 2016YFA0501902 to X.L.), National Natural Science Foundation of China (31570730 to X.L.), Advanced Innovation Center for Structural Biology (to X.L.), Tsinghua-Peking Joint Center for Life Sciences (to X.L.) and One-Thousand Talent Program by the State Council of China (to X.L.). We thank C. Lin for providing assistance with protein preparation. We thank Tsinghua University Branch of the China National Center for Protein Sciences Beijing for providing facility support in protein preparation, cryo-electron microscopy and computation. We are grateful to Tsinghua-Nikon imaging center and Tsinghua Imaging Core Facility for providing technical support and to Yanli Zhang for assistance with confocal microscopy and image processing.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., Z.Y. and X.L. designed all experiments. M.Y. and Z.Y. performed all the cryo-electron microscopy and biochemistry experiments. All authors contributed to the data analysis, manuscript preparation and revision.

Corresponding author

Correspondence to Xueming Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M., Yan, Z. & Li, X. Structural insight into the assembly of the type II secretion system pilotin–secretin complex from enterotoxigenic Escherichia coli. Nat Microbiol 3, 581–587 (2018). https://doi.org/10.1038/s41564-018-0148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-018-0148-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing