Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A cross-systems primer for synthetic microbial communities

Abstract

The design and use of synthetic communities, or SynComs, is one of the most promising strategies for disentangling the complex interactions within microbial communities, and between these communities and their hosts. Compared to natural communities, these simplified consortia provide the opportunity to study ecological interactions at tractable scales, as well as facilitating reproducibility and fostering interdisciplinary science. However, the effective implementation of the SynCom approach requires several important considerations regarding the development and application of these model systems. There are also emerging ethical considerations when both designing and deploying SynComs in clinical, agricultural or environmental settings. Here we outline current best practices in developing, implementing and evaluating SynComs across different systems, including a focus on important ethical considerations for SynCom research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dual continuums of ‘question’ and ‘system’ for SynCom research.
Fig. 2: Flow diagram of approaches used when designing, evaluating and deploying a SynCom.
Fig. 3: Examples of bottom–up and top–down design approaches for SynComs.

Similar content being viewed by others

References

  1. de Souza, R. S. C., Armanhi, J. S. L. & Arruda, P. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. Front. Plant Sci. 11, 1179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schaedler, R. W., Dubs, R. & Costello, R. Association of germfree mice with bacteria isolated from normal mice. J. Exp. Med. 122, 77–82 (1965).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kim, H. J., Boedicker, J. Q., Choi, J. W. & Ismagilov, R. F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl Acad. Sci. USA 105, 18188–18193 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. van Leeuwen, P. T., Brul, S., Zhang, J. & Wortel, M. T. Synthetic microbial communities (SynComs) of the human gut: design, assembly and applications. FEMS Microbiol. Rev. 47, fuad012 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).

    Article  PubMed  CAS  Google Scholar 

  6. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Thonar, C., Frossard, E., Šmilauer, P. & Jansa, J. Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Mol. Ecol. 23, 733–746 (2014).

    Article  PubMed  Google Scholar 

  8. Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mehlferber, E. C. et al. Phyllosphere microbial associations improve plant reproductive success. Front. Plant Sci. 14, 1273330 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flores-Núñez, V. M. et al. Synthetic communities increase microbial diversity and productivity of Agave tequilana plants in the field. Phytobiomes J. 7, 435–448 (2023).

    Article  Google Scholar 

  11. Johns, N. I., Blazejewski, T., Gomes, A. L. & Wang, H. H. Principles for designing synthetic microbial communities. Curr. Opin. Microbiol. 31, 146–153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. McCarty, N. S. & Ledesma-Amaro, R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 37, 181–197 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sasse, J. et al. Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. N. Phytologist 222, 1149–1160 (2019).

    Article  CAS  Google Scholar 

  14. Theriot, C. M. & Young, V. B. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69, 445–461 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Singer-Englar, T., Barlow, G. & Mathur, R. Obesity, diabetes and the gut microbiome: an updated review. Expert Rev. Gastroenterol. Hepatol. 13, 3–15 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Vázquez-Castellanos, J. F., Biclot, A., Vrancken, G., Huys, G. R. & Raes, J. Design of synthetic microbial consortia for gut microbiota modulation. Curr. Opin. Pharmacol. 49, 52–59 (2019).

    Article  PubMed  Google Scholar 

  17. Marín, O., González, B. & Poupin, M. J. From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities. Front. Plant Sci. 12, 650609 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Peterson, S. B., Bertolli, S. K. & Mougous, J. D. Interbacterial antagonism: at the center of bacterial life. Curr. Biol. 30, R1203–R1214 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).

    Article  PubMed  Google Scholar 

  20. Pérez Escriva, P., Fuhrer, T. & Sauer, U. Distinct N and C cross-feeding networks in a synthetic mouse gut consortium. mSystems 7, e01484-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chang, C.-Y., Bajić, D., Vila, J. C. C., Estrela, S. & Sanchez, A. Emergent coexistence in multispecies microbial communities. Science 381, 343–348 (2023).

    Article  PubMed  CAS  Google Scholar 

  22. Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Anand, G., Goel, V., Dubey, S. & Sharma, S. Tailoring the rhizospheric microbiome of Vigna radiata by adaptation to salt stress. Plant Growth Regul. 93, 79–88 (2021).

    Article  CAS  Google Scholar 

  24. Auchtung, J. M., Preisner, E. C., Collins, J., Lerma, A. I. & Britton, R. A. Identification of simplified microbial communities that inhibit Clostridioides difficile infection through dilution/extinction. mSphere 5, e00387-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kumar, N., Hitch, T. C. A., Haller, D., Lagkouvardos, I. & Clavel, T. MiMiC: a bioinformatic approach for generation of synthetic communities from metagenomes. Microb. Biotechnol. 14, 1757–1770 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. 21, 347–360 (2023).

    Article  PubMed  CAS  Google Scholar 

  27. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Emmenegger, B. et al. Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning. Nat. Commun. 14, 7983 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gerna, D., Clara, D., Allwardt, D., Mitter, B. & Roach, T. Tailored media are key to unlocking the diversity of endophytic bacteria in distinct compartments of germinating seeds. Microbiol. Spectr. 10, e00172-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Abisado, R. G., Benomar, S., Klaus, J. R., Dandekar, A. A. & Chandler, J. R. Bacterial quorum sensing and microbial community interaction. mBio 9, e02331-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rocca, J. D., Muscarella, M. E., Peralta, A. L., Izabel-Shen, D. & Simonin, M. Guided by microbes: applying community coalescence principles for predictive microbiome engineering. mSystems 6, e0053821 (2021).

    Article  PubMed  Google Scholar 

  32. Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022).

    Article  PubMed  CAS  Google Scholar 

  33. Mutlu, A., Kaspar, C., Becker, N. & Bischofs, I. B. A spore quality-quantity tradeoff favors diverse sporulation strategies in Bacillus subtilis. ISME J. 14, 2703–2714 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Parnell, J. J., Vintila, S., Tang, C., Wagner, M. R. & Kleiner, M. Evaluation of ready-to-use freezer stocks of a synthetic microbial community for maize root colonization. Microbiol. Spectr. 12, e02401-23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang, T. et al. Resource availability modulates biodiversity-invasion relationships by altering competitive interactions: resource availability modulates biodiversity. Environ. Microbiol. 19, 2984–2991 (2017).

    Article  PubMed  Google Scholar 

  36. Maier, B. A. et al. A general non-self response as part of plant immunity. Nat. Plants 7, 696–705 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ordon, J. et al. Chromosomal barcodes for simultaneous tracking of near-isogenic bacterial strains in plant microbiota. Nat. Microbiol. 9, 1117–1129 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jian, C., Luukkonen, P., Yki-Järvinen, H., Salonen, A. & Korpela, K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE 15, e0227285 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zemb, O. et al. Absolute quantitation of microbes using 16S rRNA gene metabarcoding: a rapid normalization of relative abundances by quantitative PCR targeting a 16S rRNA gene spike-in standard. MicrobiologyOpen 9, e977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morella, N. M., Yang, S. C., Hernandez, C. A. & Koskella, B. Rapid quantification of bacteriophages and their bacterial hosts in vitro and in vivo using droplet digital PCR. J. Virol. Methods 259, 18–24 (2018).

    Article  PubMed  CAS  Google Scholar 

  41. Kembel, S. W., Wu, M., Eisen, J. A. & Green, J. L. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput. Biol. 8, e1002743 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Brooks, J. P. et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 15, 66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 47, e103 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Carini, P. et al. Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. mBio 11, e02776-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. de Souza, R. S. C. et al. Genome sequences of a plant beneficial synthetic bacterial community reveal genetic features for successful plant colonization. Front. Microbiol. 10, 1779 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Giannoukos, G. et al. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol. 13, r23 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Westermann, A. J., Gorski, S. A. & Vogel, J. Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 10, 618–630 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. Lewin, G. R. et al. Application of a quantitative framework to improve the accuracy of a bacterial infection model. Proc. Natl Acad. Sci. USA 120, e2221542120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mohajeri, M. H. et al. The role of the microbiome for human health: from basic science to clinical applications. Eur. J. Nutr. 57, 1–14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mallott, E. K. et al. Human microbiome variation associated with race and ethnicity emerges as early as 3 months of age. PLoS Biol. 21, e3002230 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gupta, V. K., Paul, S. & Dutta, C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8, 1162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  54. Varga, J. J. et al. Antibiotics drive expansion of rare pathogens in a chronic infection microbiome model. mSphere 7, e00318-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bogaert, D. et al. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 31, 447–460.e6 (2023).

    Article  PubMed  CAS  Google Scholar 

  56. Ladau, J. et al. Microbial invasions and inoculants: a call to action. Preprint at https://ecoevorxiv.org/repository/view/5702/ (2023).

  57. Lange, L. et al. Microbiome ethics, guiding principles for microbiome research, use and knowledge management. Environ. Microbiome 17, 50 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pantoja Angles, A., Valle-Pérez, A. U., Hauser, C. & Mahfouz, M. M. Microbial biocontainment systems for clinical, agricultural and industrial applications. Front. Bioeng. Biotechnol. 10, 830200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Huttenhower, C., Finn, R. D. & McHardy, A. C. Challenges and opportunities in sharing microbiome data and analyses. Nat. Microbiol. 8, 1960–1970 (2023).

    Article  PubMed  CAS  Google Scholar 

  60. Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Northen, T. R. et al. Community standards and future opportunities for synthetic communities in plant–microbiota research. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01833-4 (2024).

  63. Jennings, S. A. V. & Clavel, T. Synthetic communities of gut microbes for basic research and translational approaches in animal health and nutrition. Annu. Rev. Anim. Biosci. 12, 283–300 (2024).

    Article  PubMed  CAS  Google Scholar 

  64. Shayanthan, A., Ordoñez, P. A. C. & Oresnik, I. J. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front. Agron 4, 896307 (2022).

    Article  Google Scholar 

  65. Cheng, A. G. et al. Design, construction and in vivo augmentation of a complex gut microbiome. Cell 185, 3617–3636.e19 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://doi.org/10.1101/081257 (2016).

  68. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dixon, P. VEGAN, a package of R functions for community ecology. J. Vegetation Sci. 14, 927–930 (2003).

    Article  Google Scholar 

  72. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Barnett, D. J. M., Arts, I. C. W. & Penders, J. microViz: an R package for microbiome data visualization and statistics. J. Open Source Softw. 6, 3201 (2021).

    Article  Google Scholar 

  74. Lahti, L. & Shetty, S. microbiome R package https://doi.org/10.18129/B9.bioc.microbiome (Bioconductor, 2017).

  75. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Micro. Genom. 7, 000685 (2021).

    CAS  Google Scholar 

  78. Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).

    Article  PubMed  Google Scholar 

  79. Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang, X.-W. et al. Identifying keystone species in microbial communities using deep learning. Nat. Ecol. Evol. 8, 22–31 (2024).

    Article  PubMed  CAS  Google Scholar 

  81. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Karkaria, B. D., Fedorec, A. J. H. & Barnes, C. P. Automated design of synthetic microbial communities. Nat. Commun. 12, 672 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Toju, H. et al. Scoring species for synthetic community design: network analyses of functional core microbiomes. Front. Microbiol. 11, 1361 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Paredes, S. H. et al. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol. 16, e2003962 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This manuscript was inspired by an ASM Microbe panel discussion involving many of the authors and organized by the ASM EEB track in 2023. We would like to specifically thank B. Callahan for early discussions on this topic. E.C.M. acknowledges funding from the NSF EAGER award no. 1838299, as well as support from the NSF Postdoctoral Research Fellowships in Biology award no. 2209151. B.K. is a Chan Zuckerberg San Francisco Biohub investigator. B.J. and K.A.P. acknowledge funding from the National Institutes of Health award no. U19 AI157981. G.A. and M.S. were supported by the 3rd Programme for Future Investments (France 2030), operated by the SUCSEED project (ANR- 20- PCPA-0009) and funded by the ‘Growing and Protecting crops Differently’ French Priority Research Program (PPR-CPA), part of the national investment plan operated by the French National Research Agency (ANR). L.P.P.-M. acknowledges funding from Conahcyt (Consejo Nacional de Humanidades, Ciencias y Tecnologías) under awards nos. A1-S-9889 and CBF2023-2024-2642.

Author information

Authors and Affiliations

Authors

Contributions

E.C.M. and B.K. developed the framework for the manuscript, with input from all authors. E.C.M. led the writing of the manuscript, with contributions by G.A., B.J., L.P.P.-M., K.A.P., M.S. and B.K. Authors G.A., B.J., L.P.P.-M. and K.A.P. contributed equally to the manuscript; these authors are presented in alphabetical order by surname.

Corresponding authors

Correspondence to Elijah C. Mehlferber or Britt Koskella.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehlferber, E.C., Arnault, G., Joshi, B. et al. A cross-systems primer for synthetic microbial communities. Nat Microbiol 9, 2765–2773 (2024). https://doi.org/10.1038/s41564-024-01827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01827-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing