Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A framework for understanding collective microbiome metabolism

Abstract

Microbiome metabolism underlies numerous vital ecosystem functions. Individual microbiome members often perform partial catabolism of substrates or do not express all of the metabolic functions required for growth. Microbiome members can complement each other by exchanging metabolic intermediates and cellular building blocks to achieve a collective metabolism. We currently lack a mechanistic framework to explain why microbiome members adopt partial metabolism and how metabolic functions are distributed among them. Here we argue that natural selection for proteome efficiency—that is, performing essential metabolic fluxes at a minimal protein investment—explains partial metabolism of microbiome members, which underpins the collective metabolism of microbiomes. Using the carbon cycle as an example, we discuss motifs of collective metabolism, the conditions under which these motifs increase the proteome efficiency of individuals and the metabolic interactions they result in. In summary, we propose a mechanistic framework for how collective metabolic functions emerge from selection on individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteome-efficient metabolic strategies liberate cellular resources for important physiological traits and underlie major motifs of collective microbiome metabolism.
Fig. 2: Proteome efficiency can be achieved by sharing extracellular metabolism.
Fig. 3: The splitting of catabolic pathways allows higher flux than complete catabolism.
Fig. 4: The impact of carbon entry nodes on anabolite biosynthesis.
Fig. 5: Conflict between autotrophic and heterotrophic metabolism.

Similar content being viewed by others

References

  1. Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

    CAS  PubMed  Google Scholar 

  2. D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).

    PubMed  Google Scholar 

  3. Wintermute, E. H. & Silver, P. A. Dynamics in the mixed microbial concourse. Genes Dev. 24, 2603–2614 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Culp, E. J. & Goodman, A. L. Cross-feeding in the gut microbiome: ecology and mechanisms. Cell Host Microbe 31, 485–499 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fischbach, M. A. & Sonnenburg, J. L. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10, 336–347 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schink, B. & Stams, A. J. M. in The Prokaryotes (eds. Rosenberg, E. et al.) 471–493 (Springer Berlin Heidelberg, 2013).

  7. Fritts, R. K., McCully, A. L. & McKinlay, J. B. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Biol. Rev. 85, e00135-20 (2021).

    PubMed  PubMed Central  Google Scholar 

  8. Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    CAS  PubMed  Google Scholar 

  9. Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Solden, L. M. et al. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat. Microbiol. 3, 1274–1284 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).

    CAS  PubMed  Google Scholar 

  15. Kramer, S. et al. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Front. Microbiol. 7, 1524 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Pollak, S. et al. Public good exploitation in natural bacterioplankton communities. Sci. Adv. 7, eabi4717 (2022).

    Google Scholar 

  17. Pontrelli, S. et al. Metabolic cross-feeding structures the assembly of polysaccharide degrading communities. Sci. Adv. 8, eabk3076 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Belenguer, A. et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 72, 3593–3599 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).

    CAS  PubMed  Google Scholar 

  20. Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Treitli, S. C., Kolisko, M., Husník, F., Keeling, P. J. & Hampl, V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc. Natl Acad. Sci. USA 116, 19675–19684 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cordero, O. X., Ventouras, L. A., DeLong, E. F. & Polz, M. F. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl Acad. Sci. USA 109, 20059–20064 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pierce, E. C. et al. Bacterial–fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nat. Microbiol. 6, 87–102 (2021).

    CAS  PubMed  Google Scholar 

  25. Morin, M., Pierce, E. C. & Dutton, R. J. Changes in the genetic requirements for microbial interactions with increasing community complexity. eLife 7, e37072 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. McRose, D. L. & Newman, D. K. Redox-active antibiotics enhance phosphorus bioavailability. Science 371, 1033–1037 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Costa, E., Pérez, J. & Kreft, J. U. Why is metabolic labour divided in nitrification? Trends Microbiol. 14, 213–219 (2006).

    CAS  PubMed  Google Scholar 

  28. Embree, M., Liu, J. K., Al-Bassam, M. M. & Zengler, K. Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl Acad. Sci. USA 112, 15450–15455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Estrela, S. et al. Functional attractors in microbial community assembly. Cell Syst. 13, 29–42.e7 (2022).

    CAS  PubMed  Google Scholar 

  30. Kreft, J.-U., Griffin, B. M. & González-Cabaleiro, R. Evolutionary causes and consequences of metabolic division of labour: why anaerobes do and aerobes don’t. Curr. Opin. Biotechnol. 62, 80–87 (2020).

    CAS  PubMed  Google Scholar 

  31. Muyzer, G. & Stams, A. J. M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6, 441–454 (2008).

    CAS  PubMed  Google Scholar 

  32. Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio 8, e00770-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Cooper, M. B. et al. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J. 13, 334–345 (2019).

    CAS  PubMed  Google Scholar 

  34. Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453–457 (2015).

    CAS  PubMed  Google Scholar 

  35. Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Gabrielli, N. et al. Unravelling metabolic cross‐feeding in a yeast–bacteria community using 13C‐based proteomics. Mol. Syst. Biol. 19, e11501 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 17100 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. De Jesús Astacio, L. M., Prabhakara, K. H., Li, Z., Mickalide, H. & Kuehn, S. Closed microbial communities self-organize to persistently cycle carbon. Proc. Natl Acad. Sci. USA 118, e2013564118 (2021).

    Google Scholar 

  40. Weissberg, O., Aharonovich, D. & Sher, D. Phototroph–heterotroph interactions during growth and long-term starvation across Prochlorococcus and Alteromonas diversity. ISME J. 17, 227–237 (2023).

    CAS  PubMed  Google Scholar 

  41. Zenghu, Z. et al. Long-term survival of Synechococcus and heterotrophic bacteria without external nutrient supply after changes in their relationship from antagonism to mutualism. mBio 12, e01621 (2021).

    Google Scholar 

  42. Biebl, H. & Pfennig, N. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117, 9–16 (1978).

    CAS  Google Scholar 

  43. Kleiner, M. et al. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc. Natl Acad. Sci. USA 109, E1173–E1182 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sandfeld, T., Marzocchi, U., Petro, C., Schramm, A. & Risgaard-Petersen, N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. 14, 1233–1246 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilbanks, E. G. et al. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ. Microbiol. 16, 3398–3415 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

    CAS  PubMed  Google Scholar 

  47. Lawson, C. E. et al. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat. Commun. 8, 15416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Speth, D. R., in’t Zandt, M. H., Guerrero-Cruz, S., Dutilh, B. E. & Jetten, M. S. M. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat. Commun. 7, 11172 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Laufer, K. et al. Anaerobic microbial Fe(ii) oxidation and Fe(iii) reduction in coastal marine sediments controlled by organic carbon content. Environ. Microbiol. 18, 3159–3174 (2016).

    CAS  PubMed  Google Scholar 

  50. McInerney, M. J. et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. NY Acad. Sci. 1125, 58–72 (2008).

    CAS  PubMed  Google Scholar 

  51. Anahtar, M. N., Gootenberg, D. B., Mitchell, C. M. & Kwon, D. S. Cervicovaginal microbiota and reproductive health: the virtue of simplicity. Cell Host Microbe 23, 159–168 (2018).

    CAS  PubMed  Google Scholar 

  52. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    CAS  PubMed  Google Scholar 

  53. French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).

    PubMed  Google Scholar 

  54. Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    PubMed  Google Scholar 

  55. Diender, M., Parera Olm, I. & Sousa, D. Z. Synthetic co-cultures: novel avenues for bio-based processes. Curr. Opin. Biotechnol. 67, 72–79 (2021).

    CAS  PubMed  Google Scholar 

  56. Giri, S., Shitut, S. & Kost, C. Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Curr. Opin. Biotechnol. 62, 228–238 (2020).

    CAS  PubMed  Google Scholar 

  57. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    CAS  PubMed  Google Scholar 

  58. Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).

    PubMed  Google Scholar 

  59. Basan, M. Resource allocation and metabolism: the search for governing principles. Curr. Opin. Microbiol. 45, 77–83 (2018).

    PubMed  Google Scholar 

  60. Bruggeman, F. J., Planqué, R., Molenaar, D. & Teusink, B. Searching for principles of microbial physiology. FEMS Microbiol. Rev. 44, 821–844 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Scott, M. & Hwa, T. Shaping bacterial gene expression by physiological and proteome allocation constraints. Nat. Rev. Microbiol. 21, 327–342 (2023).

    CAS  PubMed  Google Scholar 

  62. Allison, S. D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8, 626–635 (2005).

    Google Scholar 

  63. Mas, A., Jamshidi, S., Lagadeuc, Y., Eveillard, D. & Vandenkoornhuyse, P. Beyond the Black Queen Hypothesis. ISME J. 10, 2085–2091 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Zomorrodi, A. R. & Segrè, D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat. Commun. 8, 1563 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pfeiffer, T. & Bonhoeffer, S. Evolution of cross-feeding in microbial populations. Am. Nat. 163, E126–E135 (2004).

    PubMed  Google Scholar 

  68. Kaleta, C., Schäuble, S., Rinas, U. & Schuster, S. Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol. J. 8, 1105–1114 (2013).

    CAS  PubMed  Google Scholar 

  69. Mori, M., Cheng, C., Taylor, B. R., Okano, H. & Hwa, T. Functional decomposition of metabolism allows a system-level quantification of fluxes and protein allocation towards specific metabolic functions. Nat. Commun. 14, 4161 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, C. et al. Enzyme expression kinetics by Escherichia coli during transition from rich to minimal media depends on proteome reserves. Nat. Microbiol. 8, 347–359 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. Morawska, L. P., Hernandez-Valdes, J. A. & Kuipers, O. P. Diversity of bet-hedging strategies in microbial communities—recent cases and insights. WIREs Mech. Dis. 14, e1544 (2021).

    PubMed  PubMed Central  Google Scholar 

  73. Lever, M. A. et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol. Rev. 39, 688–728 (2015).

    CAS  PubMed  Google Scholar 

  74. Belliveau, N. M. et al. Fundamental limits on the rate of bacterial growth and their influence on proteomic composition. Cell Syst. 12, 924–944.e2 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Neidhardt, F. C. Escherichia Coli and Salmonella: Cellular and Molecular Biology (American Society for Microbiology, 1996).

  77. Reuveni, S., Ehrenberg, M. & Paulsson, J. Ribosomes are optimized for autocatalytic production. Nature 547, 293–297 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Van Den Berg, J., Boersma, A. J. & Poolman, B. Microorganisms maintain crowding homeostasis. Nat. Rev. Microbiol. 15, 309–318 (2017).

    PubMed  Google Scholar 

  79. Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).

    CAS  PubMed  Google Scholar 

  80. Schink, S. J., Biselli, E., Ammar, C. & Gerland, U. Death rate of E. coli during starvation is set by maintenance cost and biomass recycling. Cell Syst. 9, 64–73.e3 (2019).

    CAS  PubMed  Google Scholar 

  81. Mori, M. et al. From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions. Mol. Syst. Biol. 17, e9536 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mukherjee, A. et al. Plasticity of growth laws tunes resource allocation strategies in bacteria. PLoS Comput. Biol. 20, e1011735 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu, M. et al. A fitness trade-off between growth and survival governed by Spo0A-mediated proteome allocation constraints in Bacillus subtilis. Sci. Adv. 9, eadg9733 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Goel, A. et al. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial Crabtree effect? Mol. Microbiol. 97, 77–92 (2015).

    CAS  PubMed  Google Scholar 

  86. Müller, A. L. et al. An alternative resource allocation strategy in the chemolithoautotrophic archaeon Methanococcus maripaludis. Proc. Natl Acad. Sci. USA 118, e2025854118 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. Jahn, M. et al. Growth of Cyanobacteria is constrained by the abundance of light and carbon assimilation proteins. Cell Rep. 25, 478–486.e8 (2018).

    CAS  PubMed  Google Scholar 

  88. Wessely, F. et al. Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs. Mol. Syst. Biol. 7, 515 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Arnosti, C. Microbial extracellular enzymes and the marine carbon cycle. Ann. Rev. Mar. Sci. 3, 401–425 (2010).

    Google Scholar 

  90. Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brook, I. β-Lactamase-producing bacteria in mixed infections. Clin. Microbiol. Infect. 10, 777–784 (2004).

    CAS  PubMed  Google Scholar 

  92. Morris, J. J., Johnson, Z. I., Szul, M. J., Keller, M. & Zinser, E. R. Dependence of the Cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean’s surface. PLoS ONE 6, e16805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Estrela, S., Morris, J. J. & Kerr, B. Private benefits and metabolic conflicts shape the emergence of microbial interdependencies. Environ. Microbiol. 18, 1415–1427 (2016).

    PubMed  Google Scholar 

  95. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jeffrey Morris, J., Papoulis, S. E. & Lenski, R. E. Coexistence of evolving bacteria stabilized by a shared Black Queen function. Evolution 68, 2960–2971 (2014).

    PubMed  Google Scholar 

  97. D’Souza, G. G., Povolo, V. R., Keegstra, J. M., Stocker, R. & Ackermann, M. Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. ISME J. 15, 2614–2626 (2021).

    PubMed  PubMed Central  Google Scholar 

  98. D’Souza, G. et al. Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria. ISME J. 17, 703–711 (2023).

    PubMed  PubMed Central  Google Scholar 

  99. Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).

    CAS  PubMed  Google Scholar 

  100. Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

    CAS  PubMed  Google Scholar 

  101. Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011).

    CAS  PubMed  Google Scholar 

  102. Hu, H. et al. Fungiculture in termites is associated with a mycolytic gut bacterial community. mSphere 4, e00165-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Larsbrink, J. & McKee, L. S. Bacteroidetes bacteria in the soil: glycan acquisition, enzyme secretion, and gliding motility. Adv. Appl. Microbiol. 110, 63–98 (2020).

    CAS  PubMed  Google Scholar 

  104. Shetty, S. A. et al. Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME J. 16, 2144–2159 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tett, A. et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 26, 666–679.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).

    CAS  PubMed  Google Scholar 

  107. Park, J. O. et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat. Chem. Biol. 12, 482–489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wood, J. M. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu. Rev. Microbiol. 65, 215–238 (2011).

    CAS  PubMed  Google Scholar 

  109. Heinrich, R. & Schuster, S. The Regulation of Cellular Systems (Springer, 1996).

  110. Elsemman, I. E. et al. Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies. Nat. Commun. 13, 801 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sonenshein, A. L. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5, 917–927 (2007).

    CAS  PubMed  Google Scholar 

  112. Chen, Y. et al. Proteome constraints reveal targets for improving microbial fitness in nutrient‐rich environments. Mol. Syst. Biol. 17, e10093 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gevertz, D., Telang, A. J., Voordouw, G. & Jenneman, G. E. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl. Environ. Microbiol. 66, 2491–2501 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, Y. & Nielsen, J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc. Natl Acad. Sci. USA 116, 17592–17597 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Axe, D. D. & Bailey, J. E. Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol. Bioeng. 47, 8–19 (1995).

    CAS  PubMed  Google Scholar 

  116. Treves, D. S., Manning, S. & Adams, J. Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol. Biol. Evol. 15, 789–797 (1998).

    CAS  PubMed  Google Scholar 

  117. Noor, E., Eden, E., Milo, R. & Alon, U. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol. Cell 39, 809–820 (2010).

    CAS  PubMed  Google Scholar 

  118. Waschina, S., D’Souza, G., Kost, C. & Kaleta, C. Metabolic network architecture and carbon source determine metabolite production costs. FEBS J. 283, 2149–2163 (2016).

    CAS  PubMed  Google Scholar 

  119. Wolfsberg, E., Long, C. P. & Antoniewicz, M. R. Metabolism in dense microbial colonies: 13C metabolic flux analysis of E. coli grown on agar identifies two distinct cell populations with acetate cross-feeding. Metab. Eng. 49, 242–247 (2018).

    CAS  PubMed  Google Scholar 

  120. Zhao, J. & Shimizu, K. Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. J. Biotechnol. 101, 101–117 (2003).

    CAS  PubMed  Google Scholar 

  121. Tasoff, J., Mee, M. T. & Wang, H. H. An economic framework of microbial trade. PLoS ONE 10, e0132907 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).

    PubMed  Google Scholar 

  123. Konstantinidis, D. et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol. Syst. Biol. 17, e10189 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2013, e00960 (2013).

    Google Scholar 

  125. Pande, S. et al. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 10, 1413–1423 (2016).

    PubMed  Google Scholar 

  126. Campbell, K., Herrera-Dominguez, L., Correia-Melo, C., Zelezniak, A. & Ralser, M. Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Curr. Opin. Syst. Biol. 8, 97–108 (2018).

    Google Scholar 

  127. Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4, 366–375 (2020).

    PubMed  Google Scholar 

  128. Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).

    PubMed  PubMed Central  Google Scholar 

  130. Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2014).

    CAS  PubMed  Google Scholar 

  131. Shou, W., Ram, S. & Vilar, J. M. G. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Marchal, M. et al. A passive mutualistic interaction promotes the evolution of spatial structure within microbial populations. BMC Evol. Biol. 17, 106 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Mahlert, F., Bauer, C., Jaun, B., Thauer, R. K. & Duin, E. C. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2. J. Biol. Inorg. Chem. 7, 500–513 (2002).

    CAS  PubMed  Google Scholar 

  134. Robson, R. L. & Postgate, J. R. Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 34, 183–207 (1980).

    CAS  PubMed  Google Scholar 

  135. Schink, S. J. et al. Glycolysis/gluconeogenesis specialization in microbes is driven by biochemical constraints of flux sensing. Mol. Syst. Biol. 18, e10704 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Makowka, A. et al. Glycolytic shunts replenish the Calvin–Benson–Bassham cycle as anaplerotic reactions in Cyanobacteria. Mol. Plant 13, 471–482 (2020).

    CAS  PubMed  Google Scholar 

  137. Waldbauer, J. R., Rodrigue, S., Coleman, M. L. & Chisholm, S. W. Transcriptome and proteome dynamics of a light–dark synchronized bacterial cell cycle. PLoS ONE 7, e43432 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Young, J. D., Shastri, A. A., Stephanopoulos, G. & Morgan, J. A. Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab. Eng. 13, 656–665 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Braaksma, A., Haaker, H., Grande, H. J. & Veeger, C. The effect of the redox potential on the activity of the nitrogenase and on the Fe-protein of Azotobacter vinelandi. Eur. J. Biochem. 121, 483–491 (1982).

    CAS  PubMed  Google Scholar 

  140. Thauer, R. K. Methyl (alkyl)-coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 58, 5198–5220 (2019).

    CAS  PubMed  Google Scholar 

  141. Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).

    CAS  PubMed  Google Scholar 

  142. Foster, R. A. et al. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 5, 1484–1493 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Held, N. A. et al. Dynamic diel proteome and daytime nitrogenase activity supports buoyancy in the cyanobacterium Trichodesmium. Nat. Microbiol. 7, 300–311 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Wegener, G., Laso-Pérez, R., Orphan, V. J. & Boetius, A. Anaerobic degradation of alkanes by marine Archaea. Annu. Rev. Microbiol. 76, 553–577 (2022).

    CAS  PubMed  Google Scholar 

  145. Yu, H. et al. Comparative genomics and proteomic analysis of assimilatory sulfate reduction pathways in anaerobic methanotrophic Archaea. Front. Microbiol. 9, 2917 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Shima, S. & Thauer, R. K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr. Opin. Microbiol. 8, 643–648 (2005).

    CAS  PubMed  Google Scholar 

  147. McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

    CAS  PubMed  Google Scholar 

  148. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

    CAS  PubMed  Google Scholar 

  149. Sørensen, K. B., Finster, K. & Ramsing, N. B. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microb. Ecol. 42, 1–10 (2001).

    PubMed  Google Scholar 

  150. Tawfik, D. S. Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency? Curr. Opin. Chem. Biol. 21, 73–80 (2014).

    CAS  PubMed  Google Scholar 

  151. Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gutekunst, K. Hypothesis on the synchronistic evolution of autotrophy and heterotrophy. Trends Biochem. Sci. 43, 402–411 (2018).

    CAS  PubMed  Google Scholar 

  153. Schönheit, P., Buckel, W. & Martin, W. F. On the origin of heterotrophy. Trends Microbiol. 24, 12–25 (2016).

    PubMed  Google Scholar 

  154. Basan, M., Hui, S. & Williamson, J. R. ArcA overexpression induces fermentation and results in enhanced growth rates of E. coli. Sci. Rep. 7, 11866 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Knoop, H. et al. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput. Biol. 9, e1003081 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Gruber, A., Weber, T., Bártulos, C. R., Vugrinec, S. & Kroth, P. G. Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms. J. Basic Microbiol. 49, 58–72 (2009).

    CAS  PubMed  Google Scholar 

  157. Hiltunen, J. K. et al. The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 27, 35–64 (2003).

    CAS  PubMed  Google Scholar 

  158. Kong, F., Romero, I. T., Warakanont, J. & Li-Beisson, Y. Lipid catabolism in microalgae. New Phytol. 218, 1340–1348 (2018).

    CAS  PubMed  Google Scholar 

  159. Leinweber, A., Fredrik Inglis, R. & Kümmerli, R. Cheating fosters species co-existence in well-mixed bacterial communities. ISME J. 11, 1179–1188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Dimitri Kits, K. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).

    PubMed  Google Scholar 

  161. Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).

    CAS  PubMed  Google Scholar 

  162. Hansen, S. K., Rainey, P. B., Haagensen, J. A. J. & Molin, S. Evolution of species interactions in a biofilm community. Nature 445, 533–536 (2007).

    CAS  PubMed  Google Scholar 

  163. Sharma, S. & Steuer, R. Modelling microbial communities using biochemical resource allocation analysis. J. R. Soc. Interface 16, 20190474 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. Greening, C. et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13, 2617–2632 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Rey, F. E. et al. Dissecting the in vivo metabolic potential of two human gut acetogens. J. Biol. Chem. 285, 22082–22090 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Schuchmann, K. & Müller, V. Energetics and application of heterotrophy in acetogenic bacteria. Appl. Environ. Microbiol. 82, 4056–4069 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    CAS  PubMed  Google Scholar 

  169. Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10, 849 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Naisbit for valuable comments and suggestions; J. Fink for helpful comments on the mathematical models; and A. Flamholz, J.-U. Kreft, S. Kuehn, S. Laxman, M. Scott, A. Spormann, B. Vögeli, members of the NCCR Microbiomes and many interested researchers at conferences for stimulating discussions on the ideas presented here. We also thank the Microbial Systems Ecology group at ETH Zurich and Eawag for creating a fun and supportive work environment. This work was supported by the NCCR Microbiomes (National Centre of Competence in Research, Swiss National Science Foundation; grant 180575 to M.H., O.T.S. and M.A.), Simons Foundation (through the Principles of Microbial Ecosystems (PriME) collaboration; grant 542395 to O.T.S and M.A.), Swiss National Science Foundation (grant 31003A_169978 to M.A.), ETH Zurich and Eawag.

Author information

Authors and Affiliations

Authors

Contributions

M.H. and M.A. conceived of the study idea. M.H. developed the conceptual framework, performed the literature research and prepared the figures. All authors wrote the manuscript.

Corresponding author

Correspondence to Matthias Huelsmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Daniel Segrè, Hyun Uk Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huelsmann, M., Schubert, O.T. & Ackermann, M. A framework for understanding collective microbiome metabolism. Nat Microbiol 9, 3097–3109 (2024). https://doi.org/10.1038/s41564-024-01850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01850-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing