Table 1 Preclinical and clinical nanotechnologies for treatment of IDs
From: Nanotechnology approaches for global infectious diseases
Disease | Drug regimen | Technology | Motivation | Limitations | Stage of testing |
|---|---|---|---|---|---|
HIV infection | Cabotegravir | Injectable nanoparticles | • Reduce dosing frequency | • Requires caregiver • Injection site reactions are common | Phase III, for example clinical trials NCT02951052, NCT02938520, NCT03164564 and NCT04542070) |
Rilpivirine | Injectable nanoparticles | • Reduce dosing frequency | • Requires caregiver • Injection site reaction are common • Requires refrigeration | Phase III, for example clinical trials NCT02951052, NCT02938520 and NCT04542070 | |
Dolutegravir | Injectable nanoparticles | • Reduce dosing frequency • Target macrophages | • Will require caregiver | Preclinical (non-human primates) | |
Lopinavir–ritonavir–tenofovir | Injectable lipid nanoparticles | • Target macrophages | • Will require caregiver | Preclinical (non-human primates) | |
Lopinavir–efavirenz | Oral nanoparticles | • Avoids use of unfavourable excipients | • Requires daily dosing | Preclinical (rodents) | |
TB | Rifampicin–isoniazid–pyrazinamide | Oral lipid nanoparticles | • Improve bioavailability • Reduce dosing frequency | • Does not include ethambutol • Still requires frequent dosing | Preclinical (rodents) |
Rifampicin–isoniazid–pyrazinamide | Nebulized nanoparticles | • Improve bioavailability • Reduce dosing frequency | • Uses organic solvent • Cost of synthesis higher than lipid nanoparticles | Preclinical (rodents) | |
Rifampicin–isoniazid–pyrazinamide–ethambutol– streptomycin | Oral polymer nanoparticles | • Target alveolar macrophages • Improve bioavailability • Avoid first-pass metabolism | • Will require training patient | Preclinical (rodents) | |
BCG vaccine | Aerosolized micro-nanoparticles | • Efficient delivery to the lung | • Will require training patient | Preclinical (rodents) | |
Malaria | Chloroquine derivative, new aminoalcohol derivative | Injectable immune-liposomes | • Target infected red blood cells • Improve solubility of lipophilic drugs | • Will require caregiver | Preclinical (rodents) |
Artemether–tafenoquine | Microemulsion | • Improve bioavailability • Ease of scale-up of microemulsions | • Use of large concentrations of surfactant to stabilize microemulsions | Preclinical (rodents) | |
Artemether–lumefantrine | Injectable nanoparticles | • Reduce dosing frequency • Better bioavailability than oral formulation | • Will require caregiver | Preclinical (rodents) | |
Transmission-blocking vaccine antigen candidate Pfs25 | Injectable nanoliposomes | • Suitable for multiplexed immunization • Increased antibody generation | • Will require caregiver | Preclinical (rodents) |