Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Designing nanotheranostics with machine learning

Abstract

The inherent limits of traditional diagnoses and therapies have driven the development and application of emerging nanotechnologies for more effective and safer management of diseases, herein referred to as ‘nanotheranostics’. Although many important technological successes have been achieved in this field, widespread adoption of nanotheranostics as a new paradigm is hindered by specific obstacles, including time-consuming synthesis of nanoparticles, incomplete understanding of nano–bio interactions, and challenges regarding chemistry, manufacturing and the controls required for clinical translation and commercialization. As a key branch of artificial intelligence, machine learning (ML) provides a set of tools capable of performing time-consuming and result-perception tasks, thus offering unique opportunities for nanotheranostics. This Review summarizes the progress and challenges in this emerging field of ML-aided nanotheranostics, and discusses the opportunities in developing next-generation nanotheranostics with reliable datasets and advanced ML models to offer better clinical benefits to patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for ML-aided nanotheranostics.
Fig. 2: Timeline of key milestones for ML and nanotheranostics.
Fig. 3: ML-assisted synthesis of nanoparticles.
Fig. 4: ML-assisted understanding of nano–bio interactions.
Fig. 5: ML-assisted nanotheranostic applications.

Similar content being viewed by others

References

  1. Chen, H., Zhang, W., Zhu, G., Xie, J. & Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. AbdElFatah, T. et al. Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens. Nat. Nanotechnol. 18, 922–932 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, M. et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat. Biomed. Eng. 6, 267–275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, J., Zhao, T., Jakobsson, V. & Chen, X. Clinical translation of radiotheranostics for precision oncology. Nat. Rev. Bioeng. 1, 612–614 (2023).

    Article  CAS  Google Scholar 

  8. Fang, R. H., Gao, W. & Zhang, L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).

    Article  PubMed  Google Scholar 

  9. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  PubMed  Google Scholar 

  10. Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nam, J. et al. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019).

    Article  Google Scholar 

  12. Zhao, H. et al. A robotic platform for the synthesis of colloidal nanocrystals. Nat. Synth. 2, 505–514 (2023).

    Article  CAS  Google Scholar 

  13. Huang, X. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Park, J. et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat. Biomed. Eng. 5, 678–689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao, L. et al. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nat. Commun. 11, 4909 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).

    Article  PubMed  Google Scholar 

  21. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Ziatdinov, M., Ghosh, A., Wong, C. Y. & Kalinin, S. V. AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. Nat. Mach. Intell. 4, 1101–1112 (2022).

    Article  Google Scholar 

  24. Heinzmann, K., Carter, L. M., Lewis, J. S. & Aboagye, E. O. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng. 1, 697–713 (2017).

    Article  PubMed  Google Scholar 

  25. Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Wong, F., de la Fuente-Nunez, C. & Collins, J. J. Leveraging artificial intelligence in the fight against infectious diseases. Science 381, 164–170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  28. Chih-Wei, H. & Chih-Jen, L. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002).

    Article  Google Scholar 

  29. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).

    Article  CAS  Google Scholar 

  30. Masson, J.-F., Biggins, J. S. & Ringe, E. Machine learning for nanoplasmonics. Nat. Nanotechnol. 18, 111–123 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Wan, F., Wong, F., Collins, J. J. & de la Fuente-Nunez, C. Machine learning for antimicrobial peptide identification and design. Nat. Rev. Bioeng. 2, 392–407 (2024).

    Article  CAS  Google Scholar 

  32. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article  Google Scholar 

  33. Tao, H. et al. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 6, 701–716 (2021).

    Article  Google Scholar 

  34. Dai, X. & Chen, Y. Computational biomaterials: computational simulations for biomedicine. Adv. Mater. 35, 2204798 (2023).

    Article  CAS  Google Scholar 

  35. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Batra, R. et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 14, 1427–1435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu, M. et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 18, 657–666 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shamay, Y. et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361–368 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 1, 16075 (2016).

    Article  Google Scholar 

  43. Hong, G., Diao, S., Antaris, A. L. & Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816–10906 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Suwardi, A. et al. Machine learning-driven biomaterials evolution. Adv. Mater. 34, 2102703 (2022).

    Article  CAS  Google Scholar 

  45. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, X., Yang, M., Pang, B., Vara, M. & Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 115, 10410–10488 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, P. et al. Quantifying the efficacy of magnetic nanoparticles for MRI and hyperthermia applications via machine learning methods. Small 19, 2303522 (2023).

    Article  CAS  Google Scholar 

  49. Serov, N. & Vinogradov, V. Artificial intelligence to bring nanomedicine to life. Adv. Drug Deliv. Rev. 184, 114194 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Grand, J., Auguié, B. & Le Ru, E. C. Combined extinction and absorption UV–visible spectroscopy as a method for revealing shape imperfections of metallic nanoparticles. Anal. Chem. 91, 14639–14648 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Gherman, A. M. M. et al. Artificial neural networks modeling of the parameterized gold nanoparticles generation through photo-induced process. Mater. Res. Express 5, 085011 (2018).

    Article  Google Scholar 

  52. Shafaei, A. & Khayati, G. R. A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network–particle swarm optimization algorithm. Measurement 151, 107199 (2020).

    Article  Google Scholar 

  53. Orimoto, Y. et al. Application of artificial neural networks to rapid data analysis in combinatorial nanoparticle syntheses. J. Phys. Chem. C 116, 17885–17896 (2012).

    Article  CAS  Google Scholar 

  54. Salley, D. et al. A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ng, K. K. & Zheng, G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem. Rev. 115, 11012–11042 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Andrews, N. et al. COVID-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532–1546 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, W. et al. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharm. Sin. B 12, 2950–2962 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Walkey, C. D. & Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Youshia, J., Ali, M. E. & Lamprecht, A. Artificial neural network based particle size prediction of polymeric nanoparticles. Eur. J. Pharm. Biopharm. 119, 333–342 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Shalaby, K. S. et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int. J. Nanomed. 9, 4953–4964 (2014).

    CAS  Google Scholar 

  63. Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 1139–1143 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meng, Q.-F. et al. Inhalation delivery of dexamethasone with iSEND nanoparticles attenuates the COVID-19 cytokine storm in mice and nonhuman primates. Sci. Adv. 9, eadg3277 (2023).

  65. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  66. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Madigan, V., Zhang, F. & Dahlman, J. E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 22, 875–894 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zengel, J. et al. Hardwiring tissue-specific AAV transduction in mice through engineered receptor expression. Nat. Methods 20, 1070–1081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bryant, D. H. et al. Deep diversification of an AAV capsid protein by machine learning. Nat. Biotechnol. 39, 691–696 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. El Andaloussi, S., Mäger, I., Breakefield, X. O. & Wood, M. J. A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Zheng, W. et al. Diagnosis of paediatric tuberculosis by optically detecting two virulence factors on extracellular vesicles in blood samples. Nat. Biomed. Eng. 6, 979–991 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuypers, S. et al. Unsupervised machine learning-based clustering of nanosized fluorescent extracellular vesicles. Small 17, 2006786 (2021).

    Article  CAS  Google Scholar 

  74. Mahmoudi, M. et al. Protein−nanoparticle interactions: opportunities and challenges. Chem. Rev. 111, 5610–5637 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Kingston, B. R., Syed, A. M., Ngai, J., Sindhwani, S. & Chan, W. C. W. Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning. Proc. Natl Acad. Sci. USA 116, 14937–14946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferdosi, S. et al. Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano–bio interactions. Proc. Natl Acad. Sci. USA 119, e2106053119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cha, M. et al. Unifying structural descriptors for biological and bioinspired nanoscale complexes. Nat. Comput. Sci. 2, 243–252 (2022).

    Article  PubMed  Google Scholar 

  80. Ban, Z. et al. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ouassil, N., Pinals, R. L., Del Bonis-O’Donnell, J. T., Wang, J. W. & Landry, M. P. Supervised learning model predicts protein adsorption to carbon nanotubes. Sci. Adv. 8, eabm0898 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saldinger, J. C., Raymond, M., Elvati, P. & Violi, A. Domain-agnostic predictions of nanoscale interactions in proteins and nanoparticles. Nat. Comput. Sci. 3, 393–402 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, R., Jiang, W., Walkey, C. D., Chan, W. C. W. & Cohen, Y. Prediction of nanoparticles–cell association based on corona proteins and physicochemical properties. Nanoscale 7, 9664–9675 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Lazarovits, J. et al. Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13, 8023–8034 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Fourches, D. et al. Quantitative nanostructure−activity relationship modeling. ACS Nano 4, 5703–5712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Loecher, A., Bruyns-Haylett, M., Ballester, P. J., Borros, S. & Oliva, N. A machine learning approach to predict cellular uptake of pBAE polyplexes. Biomater. Sci. 11, 5797–5808 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Shirokii, N. et al. Quantitative prediction of inorganic nanomaterial cellular toxicity via machine learning. Small 19, 2207106 (2023).

    Article  CAS  Google Scholar 

  90. Martin et al. Evidence-based prediction of cellular toxicity for amorphous silica nanoparticles. ACS Nano 17, 9987–9999 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Jyakhwo, S., Serov, N., Dmitrenko, A. & Vinogradov, V. V. Machine learning reinforced genetic algorithm for massive targeted discovery of selectively cytotoxic inorganic nanoparticles. Small 20, 2305375 (2024).

    Article  CAS  Google Scholar 

  92. Puzyn, T. et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 6, 175–178 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Sealfon, R. S. G., Wong, A. K. & Troyanskaya, O. G. Machine learning methods to model multicellular complexity and tissue specificity. Nat. Rev. Mater. 6, 717–729 (2021).

    Article  Google Scholar 

  94. Chen, Q. et al. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. ACS Nano 17, 19810–19831 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. MacMillan, P. et al. Toward predicting nanoparticle distribution in heterogeneous tumor tissues. Nano Lett. 23, 7197–7205 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, X. et al. Predictive modeling of nanomaterial exposure effects in biological systems. Int. J. Nanomed. 8, 31–43 (2023).

    Google Scholar 

  97. Gilbertson, L. M. et al. Toward safer multi-walled carbon nanotube design: establishing a statistical model that relates surface charge and embryonic zebrafish mortality. Nanotoxicology 10, 10–19 (2016).

    CAS  PubMed  Google Scholar 

  98. Song, Y. et al. 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Sci. Adv. 9, eadi6492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin, A. A., Nimgaonkar, V., Issadore, D. & Carpenter, E. L. Extracellular vesicle-based multianalyte liquid biopsy as a diagnostic for cancer. Annu. Rev. Biomed. Data Sci. 5, 269–292 (2022).

    Article  PubMed  Google Scholar 

  100. Xu, C., Solomon, S. A. & Gao, W. Artificial intelligence-powered electronic skin. Nat. Mach. Intell. 5, 1344–1355 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Altug, H., Oh, S.-H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Safir, F. et al. Combining acoustic bioprinting with AI-assisted raman spectroscopy for high-throughput identification of bacteria in blood. Nano Lett. 23, 2065–2073 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shin, H. et al. Single test-based diagnosis of multiple cancer types using exosome-SERS-AI for early stage cancers. Nat. Commun. 14, 1644 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kavungal, D. et al. Artificial intelligence-coupled plasmonic infrared sensor for detection of structural protein biomarkers in neurodegenerative diseases. Sci. Adv. 9, eadg9644 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao, Z. et al. Machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for cytokine storm profiling in COVID-19 patients. ACS Nano 15, 18023–18036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thrift, W. J. et al. Deep learning analysis of vibrational spectra of bacterial lysate for rapid antimicrobial susceptibility testing. ACS Nano 14, 15336–15348 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, M. et al. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat. Methods 21, 609–618 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ying, Y.-L. et al. Nanopore-based technologies beyond DNA sequencing. Nat. Nanotechnol. 17, 1136–1146 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Jena, M. K. & Pathak, B. Development of an artificially intelligent nanopore for high-throughput DNA sequencing with a machine-learning-aided quantum-tunneling approach. Nano Lett. 23, 2511–2521 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Taniguchi, M. et al. Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection. Nat. Commun. 12, 3726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xia, K. et al. Synthetic heparan sulfate standards and machine learning facilitate the development of solid-state nanopore analysis. Proc. Natl Acad. Sci. USA 118, e2022806118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, M. et al. Identification of tagged glycans with a protein nanopore. Nat. Commun. 14, 1737 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, Y. et al. Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore. Nat. Nanotechnol. 17, 976–983 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Greive, S. J., Bacri, L., Cressiot, B. & Pelta, J. Identification of conformational variants for bradykinin biomarker peptides from a biofluid using a nanopore and machine learning. ACS Nano 18, 539–550 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Sajda, P. Machine learning for detection and diagnosis of disease. Annu. Rev. Biomed. Eng. 8, 537–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Tian, F. et al. Protein analysis of extracellular vesicles to monitor and predict therapeutic response in metastatic breast cancer. Nat. Commun. 12, 2536 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sahu, A. et al. Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nat. Aging 1, 1148–1161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mangalwedhekar, R. et al. Achieving nanoscale precision using neuromorphic localization microscopy. Nat. Nanotechnol. 18, 380–389 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Reis, M. et al. Machine-learning-guided discovery of 19F MRI agents enabled by automated copolymer synthesis. J. Am. Chem. Soc. 143, 17677–17689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ma, Z., Wang, F., Wang, W., Zhong, Y. & Dai, H. Deep learning for in vivo near-infrared imaging. Proc. Natl Acad. Sci. USA 118, e2021446118 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bouchard, C. et al. Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition. Nat. Mach. Intell. 5, 830–844 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Park, J. et al. Artificial intelligence-enabled quantitative phase imaging methods for life sciences. Nat. Methods 20, 1645–1660 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat. Cancer 3, 1026–1038 (2022).

    Article  PubMed  Google Scholar 

  126. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).

    Article  CAS  Google Scholar 

  127. Chen, X. et al. Artificial confocal microscopy for deep label-free imaging. Nat. Photon. 17, 250–258 (2023).

    Article  CAS  Google Scholar 

  128. Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021).

    Article  Google Scholar 

  129. Oumano, M. & Yu, H. A deep learning approach to gold nanoparticle quantification in computed tomography. Phys. Med. 87, 83–89 (2021).

    Article  PubMed  Google Scholar 

  130. Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hsueh, H. T. et al. Machine learning-driven multifunctional peptide engineering for sustained ocular drug delivery. Nat. Commun. 14, 2509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Castillo-Hair, S. M. & Seelig, G. Machine learning for designing next-generation mRNA therapeutics. Acc. Chem. Res. 55, 24–34 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ebrahimi, S. B., Samanta, D., Kusmierz, C. D. & Mirkin, C. A. Protein transfection via spherical nucleic acids. Nat. Protoc. 17, 327–357 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Huang, J. et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nat. Biomed. Eng. 7, 797–810 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. O’Callaghan, J. How OpenAI’s text-to-video tool Sora could change science—and society. Nature 627, 475–476 (2024).

    Article  PubMed  Google Scholar 

  137. Thorp, H. H. ChatGPT is fun, but not an author. Science 379, 313 (2023).

    Article  PubMed  Google Scholar 

  138. Tropsha, A., Mills, K. C. & Hickey, A. J. Reproducibility, sharing and progress in nanomaterial databases. Nat. Nanotechnol. 12, 1111–1114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. de la Iglesia, D. et al. A machine learning approach to identify clinical trials involving nanodrugs and nanodevices from ClinicalTrials.gov. PLoS ONE 9, e110331 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wyrzykowska, E. et al. Representing and describing nanomaterials in predictive nanoinformatics. Nat. Nanotechnol. 17, 924–932 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Ekins, S. et al. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435–441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Erion, G. et al. A cost-aware framework for the development of AI models for healthcare applications. Nat. Biomed. Eng. 6, 1384–1398 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nat. Commun. 11, 2519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, Y. & Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2, 17020 (2017).

    Article  CAS  Google Scholar 

  145. Ling, Q., Herstine, J. A., Bradbury, A. & Gray, S. J. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug Discov. 22, 789–806 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Hu, S. et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nat. Commun. 12, 1689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (82222035 and 82372106), Shenzhen Medical Research Fund (B2302041), Shenzhen Bay Laboratory Proof-of-Concept Fund (S231801005), National Medical Research Council of Singapore (MOH-001388-00 and CG21APR1005), Singapore Ministry of Education (MOE-000387-00) and National University of Singapore (NUHSRO/2021/034/TRP/09/Nanomedicine).

Author information

Authors and Affiliations

Authors

Contributions

L.R. contributed the idea and completed the figures. Y.Y., X.S., G.Y. and X.C. helped to write, review and revise the paper.

Corresponding authors

Correspondence to Lang Rao or Xiaoyuan Chen.

Ethics declarations

Competing interests

X.S. is the co-founder and CTO of Shenzhen Intellindust. X.C. is the co-founder and CTO of Yantai LNC Biotechnology. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Milad Abolhasani, Liangfang Zhang and Hao Zhu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, L., Yuan, Y., Shen, X. et al. Designing nanotheranostics with machine learning. Nat. Nanotechnol. 19, 1769–1781 (2024). https://doi.org/10.1038/s41565-024-01753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01753-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing