Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emission of nitrogen–vacancy centres in diamond shaped by topological photonic waveguide modes

Abstract

As the ability to integrate single-photon emitters into photonic architectures improves, so does the need to characterize and understand their interaction. Here we use a scanning diamond nanocrystal to investigate the interplay between the emission of room-temperature nitrogen–vacancy (NV) centres and a proximal topological waveguide. In our experiments, NVs serve as local, spectrally broad light sources, which we exploit to characterize the waveguide bandwidth as well as the correspondence between the light injection site and the directionality of wave propagation. We find that near-field coupling to the waveguide influences the spectral shape and ellipticity of the NV photoluminescence, revealing nanostructured light fields through polarization and amplitude contrasts exceeding 50%, with a spatial resolution set by the nanoparticle size. Our results expand on the sensing modalities afforded by colour centres, highlighting novel opportunities for on-chip quantum optics devices that leverage topological photonics to optimally manipulate and read out single-photon emitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scanning colour centre microscopy of a topological photonic waveguide.
Fig. 2: NV centres as a broadband light source.
Fig. 3: Correlated ellipticity between scattered and emitted PL.
Fig. 4: Polarization-sensitive imaging of the photonic crystal.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All source codes for data analysis and numerical modelling used in this study are available from the corresponding author upon reasonable request.

References

  1. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018).

    Article  Google Scholar 

  2. Doherty, M. W. et al. The nitrogen–vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  Google Scholar 

  3. Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).

    Article  PubMed  Google Scholar 

  4. Bogdanov, S. I. et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas. Nano Lett. 18, 4837–4842 (2018).

    Article  PubMed  Google Scholar 

  5. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  Google Scholar 

  6. Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen–vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).

    Google Scholar 

  7. Janitz, E., Bhaskar, M. K. & Childress, L. Cavity quantum electrodynamics with color centers in diamond. Optica 7, 1232–1252 (2020).

    Article  Google Scholar 

  8. Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    Article  PubMed  Google Scholar 

  9. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  Google Scholar 

  10. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  11. Mansha, S. & Chong, Y. D. Robust edge states in amorphous gyromagnetic photonic lattices. Phys. Rev. B 96, 121405 (2017).

    Article  Google Scholar 

  12. Xiao, M. & Fan, S. Photonic Chern insulator through homogenization of an array of particles. Phys. Rev. B 96, 100202 (2017).

    Article  Google Scholar 

  13. Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time-and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  14. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  PubMed  Google Scholar 

  15. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  PubMed  Google Scholar 

  16. Yang, Y. et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120, 217401 (2018).

    Article  PubMed  Google Scholar 

  17. He, C. et al. Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal. Appl. Phys. Lett. 96, 111111 (2010).

    Article  Google Scholar 

  18. Ringel, M., Pletyukhov, M. & Gritsev, V. Topologically protected strongly correlated states of photons. N. J. Phys. 16, 113030 (2014).

    Article  Google Scholar 

  19. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, 1231 (2018).

    Article  Google Scholar 

  20. Yoon, I. et al. Profiling the evanescent field of nanofiber waveguides using self-assembled polymer coatings. Nanoscale 5, 552 (2013).

    Article  PubMed  Google Scholar 

  21. Sundaramurthy, A., Kino, G. S., Conley, N. R., Fromm, D. P. & Moerner, W. E. Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ampem-Lassen, E. et al. Nano-manipulation of diamond-based single photon sources. Opt. Express 17, 11287 (2009).

    Article  PubMed  Google Scholar 

  23. Drezet, A. et al. Near-field microscopy with a scanning nitrogen–vacancy color center in a diamond nanocrystal: a brief review. Micron 70, 55–63 (2015).

    Article  PubMed  Google Scholar 

  24. Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nat. Nanotechnol. 8, 175 (2013).

    Article  PubMed  Google Scholar 

  25. Cuche, A. et al. Near-field optical microscopy with a nanodiamond-based single-photon tip. Opt. Exp. 17, 19969 (2009).

    Article  Google Scholar 

  26. Krachmalnicoff, V. et al. Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe. Opt. Exp. 21, 11536 (2013).

    Article  Google Scholar 

  27. Gross, I. et al. Real-space imaging of non-collinear antiferro- magnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    Article  PubMed  Google Scholar 

  28. Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).

    Article  PubMed  Google Scholar 

  29. Tetienne, J.-P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen–vacancy center microscope. Science 344, 1366–1369 (2014).

    Article  PubMed  Google Scholar 

  30. Thiel, L. et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nat. Nanotechnol. 11, 677–681 (2016).

    Article  PubMed  Google Scholar 

  31. Zhou, T. X. et al. A magnon scattering platform. Proc. Natl Acad. Sci. USA 118, e2019473118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).

    Article  PubMed  Google Scholar 

  33. Laraoui, A. et al. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe. Nat. Commun. 6, 8954 (2015).

    Article  PubMed  Google Scholar 

  34. Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Article  PubMed  Google Scholar 

  35. Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. N. J. Phys. 18, 113013 (2016).

    Article  Google Scholar 

  36. Auffèves, A., Gérard, J.-M. & Poizat, J.-P. Pure emitter dephasing: a resource for advanced solid-state single-photon sources. Phys. Rev. A 79, 053838 (2009).

    Article  Google Scholar 

  37. Naesby, A., Suhr, T., Kristensen, P. T. & Mork, J. Influence of pure dephasing on emission spectra from single photon sources. Phys. Rev. A 78, 045802 (2008).

    Article  Google Scholar 

  38. Albrecht, R., Bommer, A., Deutsch, C., Reichel, J. & Becher, C. Coupling of a single nitrogen–vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013).

    Article  PubMed  Google Scholar 

  39. Kan, Y. et al. Metasurface-enabled generation of circularly polarized single photons. Adv. Mater. 32, 1907832 (2020).

    Article  Google Scholar 

  40. Grange, T. et al. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 114, 193601 (2015).

    Article  PubMed  Google Scholar 

  41. Bachelot, R. & Douillard, L. in Advances in Near-Field Optics (ed. Gordon, R.) 244 (Springer, 2023); https://doi.org/10.1007/978-3-031-34742-9_4

  42. Arora, S. et al. Breakdown of spin-to-helicity locking at the nanoscale in topological photonic crystal edge states. Phys. Rev. Lett. 128, 203903 (2022).

    Article  PubMed  Google Scholar 

  43. Rotenberg, N. & Kuipers, L. Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014).

    Article  Google Scholar 

  44. Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2012).

  45. Olmon, R. L. et al. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010).

    Article  PubMed  Google Scholar 

  46. Yanagimoto, S., Yamamoto, N., Sannomiya, T. & Akiba, K. Purcell effect of nitrogen–vacancy centers in nanodiamond coupled to propagating and localized surface plasmons revealed by photon-correlation cathodoluminescence. Phys. Rev. B 103, 205418 (2021).

    Article  Google Scholar 

  47. Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    Article  PubMed  Google Scholar 

  48. Coenen, T., van de Groep, J. & Polman, A. Resonant modes of single silicon nanocavities excited by electron irradiation. ACS Nano 7, 1689–1698 (2013).

    Article  PubMed  Google Scholar 

  49. Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012).

    Article  PubMed  Google Scholar 

  50. Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    Article  PubMed  Google Scholar 

  51. Londero, E., Thiering, G., Razinkovas, L., Gali, A. & Alkauskas, A. Vibrational modes of negatively charged silicon-vacancy centers in diamond from ab initio calculations. Phys. Rev. B 98, 035306 (2018).

    Article  Google Scholar 

  52. Kianinia, M., Xu, Z.-Q., Toth, M. & Aharonovich, I. Quantum emitters in 2D materials: emitter engineering, photophysics, and integration in photonic nanostructures. Appl. Phys. Rev. 9, 011306 (2022).

    Article  Google Scholar 

  53. Nelz, R. et al. Near-field energy transfer between a luminescent 2D material and color centers in diamond. Adv. Quant. Technol. 3, 1900088 (2020).

    Article  Google Scholar 

  54. Gardiner, C. & Zoller, P. Quantum Noise (Springer, 2004).

  55. Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussion with V. Menon and T. An. R.K. and C.A.M. acknowledge support by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA) under contract number DE-SC0012704. S.K., A.V. and A.B.K. acknowledge support from the National Science Foundation (NSF) via grant NSF-2328993. J.F. acknowledges support from the NSF grant NSF-2216838. G.I.L.M. acknowledges NSF grant NSF-2208863. C. acknowledges NSF grant NSF-2203904; R.M. acknowledges support from NSF via grant NSF-2316693. We acknowledge access to the facilities and research infrastructure of the NSF CREST IDEALS, grant number NSF-2112550. The Flatiron Institute is a division of the Simons Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.K., C., A.B.K. and C.A.M. conceived the experiments. C. led early experiments with drop-casted nanoparticles showing directional propagation of PL; R.K. led the experiments in scanning probe geometry with technical assistance from R.M.; S.K., A.V., A.B.K., G.I.L.M. and J.F. carried out the modelling. All authors analysed the data; C.A.M. wrote the paper with input from all authors.

Corresponding author

Correspondence to Carlos A. Meriles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Renaud Bachelot, Romain Quidant and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–IX, Figs. 1–16, Discussion and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chandan, López Morales, G.I. et al. Emission of nitrogen–vacancy centres in diamond shaped by topological photonic waveguide modes. Nat. Nanotechnol. 20, 1605–1610 (2025). https://doi.org/10.1038/s41565-025-02001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-02001-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing