Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers

Abstract

This Review provides a perspective on tandem catalysis schemes applied to the electrochemical reduction of carbon dioxide (CO2). We define and classify microscopic and macroscopic site and cell tandem concepts pursued so far and provide a critical assessment and performance comparison against non-tandem systems. Our analysis demonstrates that tandem approaches generally seem to improve the selectivity for oxygenates compared with CO2-fed copper-based or non-tandem systems. However, tandem approaches are typically inferior in terms of ethylene production compared with non-tandem approaches. The tandem electrolyser concept seems to be the most promising tandem concept owing to the reduced materials complexity and possibility of individual tuning of microenvironments for the CO-producing and CO–CO-coupling catalytic phases. We conclude our Review by addressing key remaining challenges and promising future research directions in the field of tandem CO2 electrocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of tandem catalytic approaches according to the distance of active sites.
Fig. 2: Tandem catalyst concept and comparison with state-of-the-art non-tandem/pure Cu-based approaches.
Fig. 3: Schematic illustration of three types of tandem electrodes for CO2 electrolysis.
Fig. 4: Tandem electrolyser systems.

References

  1. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science https://doi.org/10.1126/science.aad4998 (2017).

  2. Li, X. et al. Greenhouse gas emissions, energy efficiency, and cost of synthetic fuel production using electrochemical CO2 conversion and the Fischer–Tropsch process. Energy Fuels 30, 5980–5989 (2016).

    Article  CAS  Google Scholar 

  3. Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85, 2309–2326 (1989).

    Article  CAS  Google Scholar 

  4. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008).

  5. Varela, A. S. et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015).

    Article  CAS  Google Scholar 

  6. Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal. Today 288, 74–78 (2017).

    Article  CAS  Google Scholar 

  7. Ju, W. et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ju, W. et al. Unraveling mechanistic reaction pathways of the electrochemical CO2 reduction on Fe–N–C single-site catalysts. ACS Energy Lett. 4, 1663–1671 (2019).

    Article  CAS  Google Scholar 

  9. Brückner, S. et al. Failure mode diagnosis and stabilization of an efficient reverse-bias bipolar membrane CO2 to CO electrolyzer. Energy Environ. Sci. 18, 6577–6586 (2025).

    Article  Google Scholar 

  10. Brückner, S., Ju, W. & Strasser, P. Efficient forward-bias bipolar membrane CO2 electrolysis in absence of metal cations. Adv. Energy Mater. 15, 2500186 (2025).

    Article  Google Scholar 

  11. Brückner, S. et al. Design and diagnosis of high-performance CO2-to-CO electrolyzer cells. Nat. Chem. Eng. 1, 229–239 (2024).

    Article  Google Scholar 

  12. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  13. Xiao, C. & Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS Nano 15, 7975–8000 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, X. et al. Boosting *CO coverage on Cu octahedra enclosed by Cu(1 1 1) for efficient CO2 electroreduction to C2H5OH. Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2024.160202 (2024).

  15. Wang, X. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moller, T. et al. Electrocatalytic CO2 reduction on CuOx nanocubes: tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. Int. Ed. 59, 17974–17983 (2020).

    Article  Google Scholar 

  17. Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    Article  CAS  Google Scholar 

  18. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Lum, Y., Yue, B., Lobaccaro, P., Bell, A. T. & Ager, J. W. Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 121, 14191–14203 (2017).

    Article  CAS  Google Scholar 

  20. Lum, Y. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

    Article  CAS  Google Scholar 

  21. Chen, C. et al. The in situ study of surface species and structures of oxide-derived copper catalysts for electrochemical CO2 reduction. Chem. Sci. 12, 5938–5943 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, H. et al. Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites. Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2021.148965 (2021).

  24. Kim, B. et al. Trace-Level cobalt dopants enhance CO2 electroreduction and ethylene formation on copper. ACS Energy Lett. 8, 3356–3364 (2023).

    Article  CAS  Google Scholar 

  25. Yan, X. et al. Boosting CO2 electroreduction to C2+ products on fluorine-doped copper. Green Chem. 24, 1989–1994 (2022).

    Article  CAS  Google Scholar 

  26. Fang, M. et al. Aluminum-doped mesoporous copper oxide nanofibers enabling high-efficiency CO2 electroreduction to multicarbon products. Chem. Mater. 34, 9023–9030 (2022).

    Article  CAS  Google Scholar 

  27. Li, P. et al. pd orbital hybridization induced by P-block Metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. J. Am. Chem. Soc. 145, 4675–4682 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Möller, T., Filippi, M., Brückner, S., Ju, W. & Strasser, P. A CO2 electrolyzer tandem cell system for CO2–CO co-feed valorization in a Ni–N–C/Cu-catalyzed reaction cascade. Nat. Commun. 14, 5680 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, T. et al. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 5, 202–211 (2022).

    Article  CAS  Google Scholar 

  30. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  31. Dinh, C.-T., García de Arquer, F. P., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    Article  CAS  Google Scholar 

  32. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  33. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    Article  CAS  Google Scholar 

  34. Watanabe, M., Uchida, M. & Motoo, S. Preparation of highly dispersed Pt–Ru alloy clusters and the activity for the electrooxidation of methanol. J. Electroanal. Chem. 229, 395–406 (1987).

    Article  CAS  Google Scholar 

  35. Hahn, R. & Schamel, A. A new storage concept with hydrogen production. Wiley Analytical Science (9 November 2023); https://analyticalscience.wiley.com/content/article-do/new-storage-concept-hydrogen-production

  36. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article  CAS  Google Scholar 

  37. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, J., Xu, L. & Shen, B. Recent advances in tandem electrocatalysis of carbon dioxide: a review. Renew. Sustain. Energy Rev. 199, 114516 (2024).

    Article  CAS  Google Scholar 

  39. Tang, J., Weiss, E. & Shao, Z. Advances in cutting-edge electrode engineering toward CO2 electrolysis at high current density and selectivity: a mini-review. Carbon Neutralization 1, 140–158 (2022).

    Article  Google Scholar 

  40. Cousins, L. S. & Creissen, C. E. Multiscale effects in tandem CO2 electrolysis to C2+ products. Nanoscale 16, 3915–3925 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Choudary, B. M., Chowdari, N. S., Madhi, S. & Kantam, M. L. A trifunctional catalyst for the synthesis of chiral diols. Angew. Chem. Int. Ed. 40, 4619–4623 (2001).

    Article  CAS  Google Scholar 

  42. Csjernyik, G., Éll, A. H., Fadini, L., Pugin, B. & Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system. J. Org. Chem. 67, 1657–1662 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Jeong, N., Seo, S. D. & Shin, J. Y. One pot preparation of bicyclopentenones from propargyl malonates (and propargylsulfonamides) and allylic acetates by a tandem action of catalysts. J. Am. Chem. Soc. 122, 10220–10221 (2000).

    Article  CAS  Google Scholar 

  44. Gioria, E. et al. Rational design of tandem catalysts using a core–shell structure approach. Nanoscale Adv. 3, 3454–3459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Javed, M., Brösigke, G., Schomäcker, R. & Repke, J.-U. Influence of the distance between two catalysts for CO2 to dimethyl ether tandem reaction. Chem. Eng. Technol. 46, 1163–1169 (2023).

    Article  CAS  Google Scholar 

  46. Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Irshad, M. et al. Synthesis of n-butanol-rich C3+ alcohols by direct CO2 hydrogenation over a stable Cu–Co tandem catalyst. Appl. Catal. B 340, 123201 (2024).

    Article  CAS  Google Scholar 

  48. Zhang, Q. et al. Boosting C3H6 epoxidation via tandem photocatalytic H2O2 production over nitrogen-vacancy carbon nitride. ACS Catal. 13, 13101–13110 (2023).

    Article  CAS  Google Scholar 

  49. Sun, Y. et al. Tandem photo-oxidation of methane to methanol at room temperature and pressure over Pt/TiO2. Nano Res. https://doi.org/10.1007/s12274-023-6345-z (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xu, R. et al. Tandem photocatalysis of CO2 to C2H4 via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. 145, 8261–8270 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Huo, H. et al. Nanoconfined tandem three-phase photocatalysis for highly selective CO2 reduction to ethanol. Chem. Sci. 15, 15134–15144 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ye, X. et al. Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2, 149–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, T. H. et al. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins. BMC Biotechnol. 9, 63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wada, M. et al. Production of a doubly chiral compound, (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone, by two-step enzymatic asymmetric reduction. Appl. Environ. Microbiol. 69, 933–937 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Siahrostami, S., Bjorketun, M. E., Strasser, P., Greeley, J. & Rossmeisl, J. Tandem cathode for proton exchange membrane fuel cells. Phys. Chem. Chem. Phys. 15, 9326–9334 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Wasilke, J.-C., Obrey, S. J., Baker, R. T. & Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 105, 1001–1020 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Pei, C. & Gong, J. Tandem catalysis at nanoscale. Science 371, 1203–1204 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Gao, J. et al. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Dutta, A. et al. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO by selective Cu oxidation/reduction. Nano Energy https://doi.org/10.1016/j.nanoen.2019.104331 (2020).

  60. Chen, C., Zhang, B., Zhong, J. & Cheng, Z. Selective electrochemical CO2 reduction over highly porous gold films. J. Mater. Chem. A 5, 21955–21964 (2017).

    Article  CAS  Google Scholar 

  61. Monteiro, M. C. O., Philips, M. F., Schouten, K. J. P. & Koper, M. T. M. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat. Commun. 12, 4943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vos, R. E. & Koper, M. T. M. The effect of temperature on the cation-promoted electrochemical CO2 reduction on gold. ChemElectroChem 9, e202200239 (2022).

    Article  CAS  Google Scholar 

  63. Fan, T. et al. Electrochemically driven formation of sponge-like porous silver nanocubes toward efficient CO2 electroreduction to CO. ChemSusChem 13, 2677–2683 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Salehi-Khojin, A. et al. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 117, 1627–1632 (2013).

    Article  CAS  Google Scholar 

  65. Sun, D., Xu, X., Qin, Y., Jiang, S. P. & Shao, Z. Rational design of Ag-based catalysts for the electrochemical CO2 Reduction to CO: a review. ChemSusChem 13, 39–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Gao, D. et al. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 8, 1510–1519 (2018).

    Article  CAS  Google Scholar 

  67. Huang, H. et al. Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform. Angew. Chem. Int. Ed. 56, 3594–3598 (2017).

    Article  CAS  Google Scholar 

  68. Zhu, W., Kattel, S., Jiao, F. & Chen, J. G. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 9, 1802840 (2019).

    Article  Google Scholar 

  69. Kang, M. P. L., Kolb, M. J., Calle-Vallejo, F. & Yeo, B. S. The role of undercoordinated sites on zinc electrodes for CO2 reduction to CO. Adv. Funct. Mater. 32, 2111597 (2022).

    Article  CAS  Google Scholar 

  70. Luo, W. et al. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B 273, 119060 (2020).

    Article  CAS  Google Scholar 

  71. Zhang, T. et al. Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. J. Catal. 357, 154–162 (2018).

    Article  Google Scholar 

  72. Moller, T. et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019).

    Article  Google Scholar 

  73. Varela, A. S., Ju, W. & Strasser, P. Molecular nitrogen–carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. https://doi.org/10.1002/aenm.201703614 (2018).

  74. Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).

    Article  CAS  Google Scholar 

  75. Xie, C. L., Niu, Z. Q., Kim, D., Li, M. F. & Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Ma, Y. B. et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter 4, 888–926 (2021).

    Article  CAS  Google Scholar 

  77. Li, H. X. et al. Phase engineering of nanomaterials for clean energy and catalytic applications. Adv. Energy Mater. https://doi.org/10.1002/aenm.202002019 (2020).

  78. Yu, J. et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv. Funct. Mater. 31, 2102151 (2021).

    Article  CAS  Google Scholar 

  79. Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: classifying Cu facets. ACS Catal. https://doi.org/10.1021/acscatal.9b01899 (2019).

  80. Huang, J., Mensi, M., Oveisi, E., Mantella, V. & Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Ma, Y. et al. Confined growth of silver–copper Janus nanostructures with 100 facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 34, e2110607 (2022).

    Article  PubMed  Google Scholar 

  82. Lyu, Z. et al. Kinetically controlled synthesis of Pd–Cu Janus nanocrystals with enriched surface structures and enhanced catalytic activities toward CO2 reduction. J. Am. Chem. Soc. 143, 149–162 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Jia, H. et al. Symmetry-broken Au–Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction. Adv. Funct. Mater. 31, 2101255 (2021).

    Article  CAS  Google Scholar 

  84. O’Mara, P. B. et al. Cascade reactions in nanozymes: spatially separated active sites inside Ag-core–porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 141, 14093–14097 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chen, C. et al. Cu–Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020).

    Article  CAS  Google Scholar 

  86. Iyengar, P., Kolb, M. J., Pankhurst, J., Calle-Vallejo, F. & Buonsanti, R. Theory-guided enhancement of CO2 reduction to ethanol on Ag–Cu tandem catalysts via particle-size effects. ACS Catal. 11, 13330–13336 (2021).

    Article  CAS  Google Scholar 

  87. Ting, L. R. L. et al. Enhancing CO2 electroreduction to ethanol on copper–silver composites by opening an alternative catalytic pathway. ACS Catal. 10, 4059–4069 (2020).

    Article  CAS  Google Scholar 

  88. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  89. Wang, J. et al. Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 11, 2763–2767 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Han, H. et al. Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chem. 22, 71–84 (2020).

    Article  CAS  Google Scholar 

  91. Luo, Y. et al. Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO2 to C2: Synergistic catalysis or tandem catalysis? J. Energy Chem. 92, 499–507 (2024).

    Article  CAS  Google Scholar 

  92. Chen, B. et al. Tandem catalysis for enhanced CO2 to ethylene conversion in neutral media. Adv. Funct. Mater. 34, 2310029 (2024).

    Article  CAS  Google Scholar 

  93. Fu, J. et al. Unveiling the interfacial species synergy in promoting CO2 tandem electrocatalysis in near-neutral electrolyte. J. Am. Chem. Soc. 146, 23625–23632 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Zhu, H.-L. et al. Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2. J. Am. Chem. Soc. 146, 1144–1152 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Cai, Z. et al. Hierarchical Ag–Cu interfaces promote C–C coupling in tandem CO2 electroreduction. Appl. Catal. B 325, 122310 (2023).

    Article  CAS  Google Scholar 

  96. Wei, P. et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat. Nanotechnol. 18, 299–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Romero Cuellar, N. S. et al. Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities. J. CO2 Util. 36, 263–275 (2020).

    Article  CAS  Google Scholar 

  98. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  99. Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Ju, W. et al. Electrochemical carbonyl reduction on single-site M–N–C catalysts. Commun Chem. https://doi.org/10.1038/s42004-023-01008-y (2023).

  101. Heenen, H. H. et al. The mechanism for acetate formation in electrochemical CO2 reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy Environ. Sci. 15, 3978–3990 (2022).

    Article  CAS  Google Scholar 

  102. Kastlunger, G., Heenen, H. H. & Govindarajan, N. Combining first-principles kinetics and experimental data to establish guidelines for product selectivity in electrochemical CO2 reduction. ACS Catal. 13, 5062–5072 (2023).

    Article  CAS  Google Scholar 

  103. Zhan, C. et al. Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol. Nat. Energy 9, 1485–1496 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meng, D.-L. et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel–nitrogen site/copper nanoparticle catalysts. Angew. Chem. Int. Ed. 60, 25485–25492 (2021).

    Article  CAS  Google Scholar 

  105. Wang, M., Loiudice, A., Okatenko, V., Sharp, I. D. & Buonsanti, R. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C2 products in tandem electrocatalytic CO2 reduction. Chem. Sci. 14, 1097–1104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wei, C. et al. Nanoscale management of CO transport in CO2 Electroreduction: boosting Faradaic efficiency to multicarbon products via nanostructured tandem electrocatalysts. Adv. Funct. Mater. 33, 2214992 (2023).

    Article  CAS  Google Scholar 

  107. Yan, T., Wang, P. & Sun, W. Y. Single-site metal–organic framework and copper foil tandem catalyst for highly selective CO2 Electroreduction to C2H4. Small 19, e2206070 (2023).

    Article  PubMed  Google Scholar 

  108. Akter, T., Pan, H. & Barile, C. J. Tandem electrocatalytic CO2 reduction inside a membrane with enhanced selectivity for ethylene. J. Phys. Chem. C 126, 10045–10052 (2022).

    Article  CAS  Google Scholar 

  109. She, X. et al. Tandem electrodes for carbon dioxide reduction into C2+ products at simultaneously high production efficiency and rate. Cell Rep. Phys. Sci. https://doi.org/10.1016/j.xcrp.2020.100051 (2020).

  110. Zhang, T., Li, Z., Zhang, J. & Wu, J. Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. J. Catal. 387, 163–169 (2020).

    Article  CAS  Google Scholar 

  111. Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    Article  CAS  Google Scholar 

  112. Gurudayal et al. Sequential cascade electrocatalytic conversion of carbon dioxide to C–C coupled products. ACS Appl. Energy Mater. 2, 4551–4559 (2019).

    Article  CAS  Google Scholar 

  113. Liu, Y., Qiu, H., Li, J., Guo, L. & Ager, J. W. Tandem electrocatalytic CO2 reduction with efficient intermediate conversion over pyramid-textured Cu-Ag catalysts. ACS Appl. Mater. Interfaces 13, 40513–40521 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  115. Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. Rigorous evaluation of liquid products in high-rate CO2/CO electrolysis. ACS Energy Lett. 7, 2595–2601 (2022).

    Article  CAS  Google Scholar 

  116. Xue, W. et al. Bromine-enhanced generation and epoxidation of ethylene in tandem CO2 electrolysis towards ethylene oxide. Angew. Chem. Int. Ed. 62, e202311570 (2023).

    Article  CAS  Google Scholar 

  117. Li, Y. et al. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nat. Catal. 5, 185–192 (2022).

    Article  Google Scholar 

  118. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Theaker, N. et al. Heterogeneously catalyzed two-step cascade electrochemical reduction of CO2 to ethanol. Electrochim. Acta 274, 1–8 (2018).

    Article  CAS  Google Scholar 

  120. Wu, G. et al. Selective electroreduction of CO2 to n-propanol in two-step tandem catalytic system. Adv. Energy Mater. 12, 2202054 (2022).

    Article  CAS  Google Scholar 

  121. Popovic, S. et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 59, 14736–14746 (2020).

    Article  CAS  Google Scholar 

  122. Vavra, J. et al. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction. Nat. Catal. 7, 89–97 (2024).

    Article  CAS  Google Scholar 

  123. Sassenburg, M., Iglesias van Montfort, H. P., Kolobov, N., Smith, W. A. & Burdyny, T. Bulk layering effects of Ag and Cu for tandem CO2 electrolysis. ChemSusChem 18, e202401769 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Alkayyali, T. et al. Pathways to reduce the energy cost of carbon monoxide electroreduction to ethylene. Joule 8, 1478–1500 (2024).

    Article  CAS  Google Scholar 

  125. Sisler, J. et al. Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems. ACS Energy Lett. 6, 997–1002 (2021).

    Article  CAS  Google Scholar 

  126. Sassenburg, M., Kelly, M., Subramanian, S., Smith, W. A. & Burdyny, T. Zero-gap electrochemical CO2 reduction cells: challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett. 8, 321–331 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, K., Kas, R., Smith, W. A. & Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021).

    Article  CAS  Google Scholar 

  128. Küngas, R. Electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).

    Article  Google Scholar 

  129. Song, Y., Zhang, X., Xie, K., Wang, G. & Bao, X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Adv. Mater. 31, 1902033 (2019).

    Article  CAS  Google Scholar 

  130. Sahin, B. et al. Accumulation of liquid byproducts in an electrolyte as a critical factor that compromises long-term functionality of CO2-to-C2H4 Electrolysis. ACS Appl. Mater. Interfaces 15, 45844–45854 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Liang, Y. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth. 3, 1104–1112 (2024).

    Article  CAS  Google Scholar 

  132. Xu, Q. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 101006701, ECOFUEL.

Author information

Authors and Affiliations

Authors

Contributions

M.F., W.J., T.M., L.L., X.W. and P.S. wrote the paper and prepared the figures.

Corresponding author

Correspondence to Peter Strasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippi, M., Ju, W., Möller, T. et al. Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers. Nat. Nanotechnol. (2026). https://doi.org/10.1038/s41565-025-02117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41565-025-02117-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing