Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in quantum imaging

Abstract

Modern imaging technologies are widely based on classical principles of light or electromagnetic wave propagation. They can be remarkably sophisticated, with recent successes ranging from single-molecule microscopy to imaging far-distant galaxies. However, new imaging technologies based on quantum principles are gradually emerging. They can either surpass classical approaches or provide novel imaging capabilities that would not otherwise be possible. Here we provide an overview of the most recently developed quantum imaging systems, highlighting the nonclassical properties of sources, such as bright squeezed light, entangled photons and single-photon emitters that enable their functionality. We outline potential upcoming trends and the associated challenges, all driven by a central enquiry, which is to understand whether quantum light can make visible the invisible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SPADE for optimal separation estimation.
Fig. 2: Biological imaging with bright squeezed light.
Fig. 3: Imaging with two-photon states.
Fig. 4: Microscopes based on imaging with undetected photons and single-photon emitters.

Similar content being viewed by others

References

  1. Lupo, C. & Pirandola, S. Ultimate precision bound of quantum and subwavelength imaging. Phys. Rev. Lett. 117, 190802 (2016).

    Article  ADS  Google Scholar 

  2. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    Article  ADS  Google Scholar 

  3. Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

    Article  ADS  Google Scholar 

  4. Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon. 13, 116–122 (2019).

    Article  ADS  Google Scholar 

  5. Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolomaeus, H. & Ramelow, S. Microscopy with undetected photons in the mid-infrared. Sci. Adv. 6, eabd0264 (2020).

    Article  ADS  Google Scholar 

  6. Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).

    Article  ADS  Google Scholar 

  7. Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).

    Article  Google Scholar 

  8. Crawford, J. et al. Towards quantum telescopes: demonstration of a two-photon interferometer for precision astrometry. Opt. Express 31, 44246–44258 (2023).

    Article  ADS  Google Scholar 

  9. Kolobov, M. I. Quantum Imaging (Springer, 2007).

  10. Genovese, M. Real applications of quantum imaging. J. Opt. 18, 073002 (2016).

    Article  ADS  Google Scholar 

  11. Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

    Article  Google Scholar 

  12. Gatti, A., Brambilla, E. & Lugiato, L. Quantum imaging. Prog. Opt. 51, 251–348 (2008).

    Article  ADS  Google Scholar 

  13. Gilaberte Basset, M. et al. Perspectives for applications of quantum imaging. Laser Photon. Rev. 13, 1900097 (2019).

    Article  ADS  Google Scholar 

  14. Magaña-Loaiza, O. S. & Boyd, R. W. Quantum imaging and information. Rep. Prog. Phys. 82, 124401 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  15. Shih, Y. Quantum imaging. IEEE J. Select. Top. Quantum Electron. 13, 1016–1030 (2007).

    Article  ADS  Google Scholar 

  16. Lubin, G., Oron, D., Rossman, U., Tenne, R. & Yallapragada, V. J. Photon correlations in spectroscopy and microscopy. ACS Photonics 9, 2891–2904 (2022).

    Article  Google Scholar 

  17. Moodley, C. & Forbes, A. Advances in quantum imaging with machine intelligence. Laser Photon. Rev. https://doi.org/10.1002/lpor.202300939 (2024).

  18. Cramér, H. Mathematical Methods of Statistics Vol. 43 (Princeton Univ. Press, 1999).

  19. Rao, C. R. in Mathematical Proceedings of the Cambridge Philosophical Society Vol. 43, 280–283 (Cambridge Univ. Press, 1947).

  20. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  21. Helstrom, C. W. Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  22. Braunstein, S. L. & Caves, C. M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  23. Pezze, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  24. Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  25. Gessner, M., Treps, N. & Fabre, C. Estimation of a parameter encoded in the modal structure of a light beam: a quantum theory. Optica 10, 996–999 (2023).

    Article  ADS  Google Scholar 

  26. Gessner, M., Fabre, C. & Treps, N. Superresolution limits from measurement crosstalk. Phys. Rev. Lett. 125, 100501 (2020).

    Article  ADS  Google Scholar 

  27. Pinel, O. et al. Ultimate sensitivity of precision measurements with intense gaussian quantum light: a multimodal approach. Phys. Rev. A 85, 010101 (2012).

    Article  ADS  Google Scholar 

  28. Treps, N. et al. A quantum laser pointer. Science 301, 940–943 (2003).

    Article  ADS  Google Scholar 

  29. Tsang, M., Nair, R. & Lu, X.-M. Quantum theory of superresolution for two incoherent optical point sources. Phys. Rev. X 6, 031033 (2016).

    Google Scholar 

  30. Boucher, P., Fabre, C., Labroille, G. & Treps, N. Spatial optical mode demultiplexing as a practical tool for optimal transverse distance estimation. Optica 7, 1621–1626 (2020).

    Article  ADS  Google Scholar 

  31. Santamaria, L., Pallotti, D., de Cumis, M. S., Dequal, D. & Lupo, C. Spatial-mode demultiplexing for enhanced intensity and distance measurement. Opt. Express 31, 33930–33944 (2023).

    Article  ADS  Google Scholar 

  32. Rouvière, C. et al. Ultra-sensitive separation estimation of optical sources. Optica 11, 166–170 (2024).

    Article  ADS  Google Scholar 

  33. Ansari, V. et al. Achieving the ultimate quantum timing resolution. PRX Quantum 2, 010301 (2021).

    Article  Google Scholar 

  34. Tan, X.-J. et al. Quantum-inspired superresolution for incoherent imaging. Optica 10, 1189–1194 (2023).

    Article  ADS  Google Scholar 

  35. Bowen, W. P., Schnabel, R., Treps, N., Bachor, H. & Lam, P. K. Recovery of continuous wave squeezing at low frequencies. J. Opt. B Quantum Semiclass. Opt. 4, 421–424 (2002).

    Article  ADS  Google Scholar 

  36. McCormick, C., Boyer, V., Arimondo, E. & Lett, P. Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett. 32, 178–180 (2007).

    Article  ADS  Google Scholar 

  37. Harry, G. M. et al. Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, 084006 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  38. Dwyer, S. E., Mansell, G. L. & McCuller, L. Squeezing in gravitational wave detectors. Galaxies 10, 46 (2022).

    Article  ADS  Google Scholar 

  39. Taylor, M. A. & Bowen, W. P. Quantum metrology and its application in biology. Phys. Rep. 615, 1–59 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  40. Vahlbruch, H., Mehmet, M., Danzmann, K. & Schnabel, R. Detection of 15-dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016).

    Article  ADS  Google Scholar 

  41. Lawrie, B. J., Lett, P. D., Marino, A. M. & Pooser, R. C. Quantum sensing with squeezed light. ACS Photonics 6, 1307–1318 (2019).

    Article  Google Scholar 

  42. Taylor, M. A. et al. Biological measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013).

    Article  ADS  Google Scholar 

  43. Taylor, M. A. et al. Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X 4, 011017 (2014).

    Google Scholar 

  44. Pooser, R. et al. Truncated nonlinear interferometry for quantum-enhanced atomic force microscopy. Phys. Rev. Lett. 124, 230504 (2020).

    Article  ADS  Google Scholar 

  45. Dowran, M., Kumar, A., Lawrie, B. J., Pooser, R. C. & Marino, A. M. Quantum-enhanced plasmonic sensing. Optica 5, 628–633 (2018).

    Article  ADS  Google Scholar 

  46. Pooser, R. C. & Lawrie, B. Plasmonic trace sensing below the photon shot noise limit. ACS Photonics 3, 8–13 (2016).

    Article  Google Scholar 

  47. de Andrade, R. B. et al. Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy. Optica 7, 470–475 (2020).

    Article  ADS  Google Scholar 

  48. Xu, Z. et al. Stimulated Raman scattering spectroscopy with quantum-enhanced balanced detection. Opt. Express 30, 18589–18598 (2022).

    Article  ADS  Google Scholar 

  49. Xu, Z. et al. Quantum-enhanced stimulated Raman scattering microscopy in a high-power regime. Opt. Lett. 47, 5829–5832 (2022).

    Article  ADS  Google Scholar 

  50. Xu, Z. et al. Dual-polarization quantum-enhanced stimulated Raman scattering microscopy. Appl. Phys. Lett 123, 024006 (2023).

    Article  ADS  Google Scholar 

  51. Li, T., Li, F., Liu, X., Yakovlev, V. V. & Agarwal, G. S. Quantum-enhanced stimulated brillouin scattering spectroscopy and imaging. Optica 9, 959–964 (2022).

    Article  ADS  Google Scholar 

  52. Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015).

    Article  Google Scholar 

  53. Camp Jr, C. H. & Cicerone, M. T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photon. 9, 295–305 (2015).

    Article  ADS  Google Scholar 

  54. Fu, Y., Wang, H., Shi, R. & Cheng, J.-X. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt. Express 14, 3942–3951 (2006).

    Article  ADS  Google Scholar 

  55. Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).

    Article  ADS  Google Scholar 

  56. Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    Article  ADS  Google Scholar 

  57. Samantaray, N., Ruo-Berchera, I., Meda, A. & Genovese, M. Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl. 6, e17005 (2017).

    Article  ADS  Google Scholar 

  58. Ortolano, G. et al. Quantum enhanced non-interferometric quantitative phase imaging. Light Sci. Appl. 12, 171 (2023).

    Article  ADS  Google Scholar 

  59. Madonini, F., Severini, F., Zappa, F. & Villa, F. Single photon avalanche diode arrays for quantum imaging and microscopy. Adv. Quantum Technol. 4, 2100005 (2021).

    Article  Google Scholar 

  60. Vidyapin, V., Zhang, Y., England, D. & Sussman, B. Characterisation of a single photon event camera for quantum imaging. Sci. Rep. 13, 1009 (2023).

    Article  ADS  Google Scholar 

  61. Giovannetti, V., Lloyd, S., Maccone, L. & Shapiro, J. H. Sub-Rayleigh-diffraction-bound quantum imaging. Phys. Rev. A 79, 013827 (2009).

    Article  ADS  Google Scholar 

  62. Reichert, M., Defienne, H. & Fleischer, J. W. Massively parallel coincidence counting of high-dimensional entangled states. Sci. Rep. 8, 7925 (2018).

    Article  ADS  Google Scholar 

  63. Toninelli, E. et al. Resolution-enhanced quantum imaging by centroid estimation of biphotons. Optica 6, 347–353 (2019).

    Article  ADS  Google Scholar 

  64. He, Z., Zhang, Y., Tong, X., Li, L. & Wang, L. V. Quantum microscopy of cells at the Heisenberg limit. Nat. Commun. 14, 2441 (2023).

    Article  ADS  Google Scholar 

  65. D’Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).

    Article  ADS  Google Scholar 

  66. Unternährer, M., Bessire, B., Gasparini, L., Perenzoni, M. & Stefanov, A. Super-resolution quantum imaging at the Heisenberg limit. Optica 5, 1150–1154 (2018).

    Article  ADS  Google Scholar 

  67. Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).

    Article  ADS  Google Scholar 

  68. Israel, Y., Rosen, S. & Silberberg, Y. Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014).

    Article  ADS  Google Scholar 

  69. Camphausen, R. et al. A quantum-enhanced wide-field phase imager. Sci. Adv. 7, eabj2155 (2021).

    Article  ADS  Google Scholar 

  70. Defienne, H. et al. Pixel super-resolution with spatially entangled photons. Nat. Commun. 13, 3566 (2022).

    Article  ADS  Google Scholar 

  71. Devaux, F., Mosset, A., Moreau, P.-A. & Lantz, E. Imaging spatiotemporal Hong-Ou-Mandel interference of biphoton states of extremely high Schmidt number. Phys. Rev. X 10, 031031 (2020).

    Google Scholar 

  72. Ndagano, B. et al. Quantum microscopy based on Hong–Ou–Mandel interference. Nat. Photon. 16, 384–389 (2022).

    Article  ADS  Google Scholar 

  73. Lyons, A. et al. Attosecond-resolution Hong-Ou-Mandel interferometry. Sci. Adv. 4, eaap9416 (2018).

    Article  ADS  Google Scholar 

  74. Lopaeva, E. et al. Experimental realization of quantum illumination. Phys. Rev. Lett. 110, 153603 (2013).

    Article  ADS  Google Scholar 

  75. Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum image distillation. Sci. Adv. 5, eaax0307 (2019).

    Article  ADS  Google Scholar 

  76. Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging through noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).

    Article  ADS  Google Scholar 

  77. Zhao, J. et al. Light detection and ranging with entangled photons. Opt. Express 30, 3675–3683 (2022).

    Article  ADS  Google Scholar 

  78. England, D. G., Balaji, B. & Sussman, B. J. Quantum-enhanced standoff detection using correlated photon pairs. Phys. Rev. A 99, 023828 (2019).

    Article  ADS  Google Scholar 

  79. Liu, H., Qin, C., Papangelakis, G., Iu, M. L. & Helmy, A. S. Compact all-fiber quantum-inspired LiDAR with over 100-dB noise rejection and single photon sensitivity. Nat. Commun. 14, 5344 (2023).

    Article  ADS  Google Scholar 

  80. Zhang, Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024).

    Article  Google Scholar 

  81. Pittman, T. B., Shih, Y., Strekalov, D. & Sergienko, A. V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995).

    Article  ADS  Google Scholar 

  82. Devaux, F., Mosset, A., Bassignot, F. & Lantz, E. Quantum holography with biphotons of high schmidt number. Phys. Rev. A 99, 033854 (2019).

    Article  ADS  Google Scholar 

  83. Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).

    Article  Google Scholar 

  84. Zhang, Y., England, D. & Sussman, B. Snapshot hyperspectral imaging with quantum correlated photons. Opt. Express 31, 2282–2291 (2023).

    Article  ADS  Google Scholar 

  85. Hodgson, H., Zhang, Y., England, D. & Sussman, B. Reconfigurable phase contrast microscopy with correlated photon pairs. Appl. Phys. Lett 122, 034001 (2023).

    Article  ADS  Google Scholar 

  86. Cameron, P. et al. Adaptive optical imaging with entangled photons. Science 383, 1142–1148 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  87. Aspden, R. S. et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1049–1052 (2015).

    Article  ADS  Google Scholar 

  88. Bornman, N. et al. Ghost imaging using entanglement-swapped photons. npj Quantum Inf. 5, 63 (2019).

    Article  ADS  Google Scholar 

  89. Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    Article  ADS  Google Scholar 

  90. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  ADS  Google Scholar 

  91. Wang, L., Zou, X. & Mandel, L. Observation of induced coherence in two-photon downconversion. JOSA B 8, 978–980 (1991).

    Article  ADS  Google Scholar 

  92. Cardoso, A. C. et al. Classical imaging with undetected light. Phys. Rev. A 97, 033827 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  93. Lemos, G. B., Lahiri, M., Ramelow, S., Lapkiewicz, R. & Plick, W. N. Quantum imaging and metrology with undetected photons: tutorial. JOSA B 39, 2200–2228 (2022).

    Article  ADS  Google Scholar 

  94. Lahiri, M., Hochrainer, A., Lapkiewicz, R., Lemos, G. B. & Zeilinger, A. Nonclassicality of induced coherence without induced emission. Phys. Rev. A 100, 053839 (2019).

    Article  ADS  Google Scholar 

  95. Wang, L., Zou, X. & Mandel, L. Induced coherence without induced emission. Phys. Rev. A 44, 4614–4622 (1991).

    Article  ADS  Google Scholar 

  96. Shapiro, J. H., Venkatraman, D. & Wong, F. N. C. Classical imaging with undetected photons. Sci. Rep. 5, 10329 (2015).

    Article  ADS  Google Scholar 

  97. Kolobov, M. I., Giese, E., Lemieux, S., Fickler, R. & Boyd, R. W. Controlling induced coherence for quantum imaging. J. Opt. 19, 054003 (2017).

    Article  ADS  Google Scholar 

  98. Viswanathan, B., Lemos, G. B. & Lahiri, M. Position correlation enabled quantum imaging with undetected photons. Opt. Lett. 46, 3496–3499 (2021).

    Article  ADS  Google Scholar 

  99. Fuenzalida, J. et al. Resolution of quantum imaging with undetected photons. Quantum 6, 646 (2022).

    Article  Google Scholar 

  100. Basset, M. G. et al. Experimental analysis of image resolution of quantum imaging with undetected light through position correlations. Phys. Rev. A 108, 052610 (2023).

    Article  ADS  Google Scholar 

  101. Santos, E. A., Pertsch, T., Setzpfandt, F. & Saravi, S. Subdiffraction quantum imaging with undetected photons. Phys. Rev. Lett. 128, 173601 (2022).

    Article  ADS  Google Scholar 

  102. Kviatkovsky, I., Chrzanowski, H. M. & Ramelow, S. Mid-infrared microscopy via position correlations of undetected photons. Opt. Express 30, 5916–5925 (2022).

    Article  ADS  Google Scholar 

  103. Kutas, M. et al. Terahertz quantum sensing. Sci. Adv. 6, eaaz8065 (2020).

    Article  ADS  Google Scholar 

  104. Töpfer, S. et al. Quantum holography with undetected light. Sci. Adv. 8, eabl4301 (2022).

    Article  ADS  Google Scholar 

  105. Vallés, A., Jiménez, G., Salazar-Serrano, L. J. & Torres, J. P. Optical sectioning in induced coherence tomography with frequency-entangled photons. Phys. Rev. A 97, 023824 (2018).

    Article  ADS  Google Scholar 

  106. Paterova, A. V., Yang, H., An, C., Kalashnikov, D. A. & Krivitsky, L. A. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci. Technol. 3, 025008 (2018).

    Article  ADS  Google Scholar 

  107. Vanselow, A. et al. Frequency-domain optical coherence tomography with undetected mid-infrared photons. Optica 7, 1729–1736 (2020).

    Article  ADS  Google Scholar 

  108. Machado, G. J., Frascella, G., Torres, J. P. & Chekhova, M. V. Optical coherence tomography with a nonlinear interferometer in the high parametric gain regime. Appl. Phys. Lett 117, 094002 (2020).

    Article  ADS  Google Scholar 

  109. Kalashnikov, D. A., Paterova, A. V., Kulik, S. P. & Krivitsky, L. A. Infrared spectroscopy with visible light. Nat. Photon. 10, 98–101 (2016).

    Article  ADS  Google Scholar 

  110. Paterova, A. V., Maniam, S. M., Yang, H., Grenci, G. & Krivitsky, L. A. Hyperspectral infrared microscopy with visible light. Sci. Adv. 6, eabd0460 (2020).

    Article  ADS  Google Scholar 

  111. Kaufmann, P., Chrzanowski, H. M., Vanselow, A. & Ramelow, S. Mid-IR spectroscopy with NIR grating spectrometers. Opt. Express 30, 5926–5936 (2022).

    Article  ADS  Google Scholar 

  112. Placke, M. et al. Fourier-transform mid-IR hyperspectral imaging with undetected photons. In CLEO: Applications and Technology, AM2N–4 (Optica Publishing Group, 2023).

  113. Hashimoto, K., Horoshko, D. B. & Chekhova, M. V. Broadband spectroscopy and interferometry with undetected photons at strong parametric amplification. Adv. Quantum Technol. https://doi.org/10.1002/qute.202300299 (2023).

  114. Lindner, C. et al. High-sensitivity quantum sensing with pump-enhanced spontaneous parametric down-conversion. APL Photonics 8, 051301 (2023).

    Article  ADS  Google Scholar 

  115. Pearce, E. et al. Practical quantum imaging with undetected photons. Opt. Continuum 2, 2386–2397 (2023).

    Article  Google Scholar 

  116. Thiel, C. et al. Quantum imaging with incoherent photons. Phys. Rev. Lett. 99, 133603 (2007).

    Article  ADS  Google Scholar 

  117. Oppel, S., Büttner, T., Kok, P. & von Zanthier, J. Superresolving multiphoton interferences with independent light sources. Phys. Rev. Lett. 109, 233603 (2012).

    Article  ADS  Google Scholar 

  118. Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    Article  ADS  Google Scholar 

  119. Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).

    Article  ADS  Google Scholar 

  120. Israel, Y., Tenne, R., Oron, D. & Silberberg, Y. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat. Commun. 8, 14786 (2017).

    Article  ADS  Google Scholar 

  121. Monticone, D. G. et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics. Phys. Rev. Lett. 113, 143602 (2014).

    Article  ADS  Google Scholar 

  122. Lubin, G. et al. Quantum correlation measurement with single photon avalanche diode arrays. Opt. Express 27, 32863–32882 (2019).

    Article  ADS  Google Scholar 

  123. Sroda, A. et al. SOFISM: super-resolution optical fluctuation image scanning microscopy. Optica 7, 1308–1316 (2020).

    Article  ADS  Google Scholar 

  124. Classen, A., von Zanthier, J., Scully, M. O. & Agarwal, G. S. Superresolution via structured illumination quantum correlation microscopy. Optica 4, 580–587 (2017).

    Article  ADS  Google Scholar 

  125. Liu, P. Resolution enhancement in random illumination microscopy using photon correlations. Appl. Opt. 61, 2910–2914 (2022).

    Article  ADS  Google Scholar 

  126. Field, J. J. et al. Superresolved multiphoton microscopy with spatial frequency-modulated imaging. Proc. Natl Acad. Sci. USA 113, 6605–6610 (2016).

    Article  ADS  Google Scholar 

  127. Weston, K. D. et al. Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons. Anal. Chem. 74, 5342–5349 (2002).

    Article  Google Scholar 

  128. Wayne, M. et al. A 500 × 500 dual-gate SPAD imager with 100% temporal aperture and 1-ns minimum gate length for flim and phasor imaging applications. IEEE Trans. Electron Devices 69, 2865–2872 (2022).

    Article  ADS  Google Scholar 

  129. Resta, G. V. et al. Gigahertz detection rates and dynamic photon-number resolution with superconducting nanowire arrays. Nano Lett. 23, 6018–6026 (2023).

    Article  ADS  Google Scholar 

  130. Rossman, U. et al. Rapid quantum image scanning microscopy by joint sparse reconstruction. Optica 6, 1290–1296 (2019).

    Article  ADS  Google Scholar 

  131. Kudyshev, Z. A. et al. Machine learning assisted quantum super-resolution microscopy. Nat. Commun. 14, 4828 (2023).

    Article  ADS  Google Scholar 

  132. Treps, N. et al. Surpassing the standard quantum limit for optical imaging using nonclassical multimode light. Phys. Rev. Lett. 88, 203601 (2002).

    Article  ADS  Google Scholar 

  133. Paterova, A. V., Yang, H., Toa, Z. S. & Krivitsky, L. A. Quantum imaging for the semiconductor industry. Appl. Phys. Lett 117, 054004 (2020).

    Article  ADS  Google Scholar 

  134. Gilaberte Basset, M. et al. Video-rate imaging with undetected photons. Laser Photon. Rev. 15, 2000327 (2021).

    Article  ADS  Google Scholar 

  135. Courme, B. et al. Quantifying high-dimensional spatial entanglement with a single-photon-sensitive time-stamping camera. Opt. Lett. 48, 3439–3442 (2023).

    Article  ADS  Google Scholar 

  136. Lounis, B., Bechtel, H., Gerion, D., Alivisatos, P. & Moerner, W. Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett. 329, 399–404 (2000).

    Article  ADS  Google Scholar 

  137. Kocher, C. A. & Commins, E. D. Polarization correlation of photons emitted in an atomic cascade. Phys. Rev. Lett. 18, 575–577 (1967).

    Article  ADS  Google Scholar 

  138. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    Article  ADS  Google Scholar 

  139. Slusher, R., Hollberg, L., Yurke, B., Mertz, J. & Valley, J. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985).

    Article  ADS  Google Scholar 

  140. Xiao, M., Wu, L.-A. & Kimble, H. J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987).

    Article  ADS  Google Scholar 

  141. Kolobov, M. & Sokolov, I. Multimode squeezing, antibunching in space and noise-free optical images. Europhys. Lett. 15, 271 (1991).

    Article  ADS  Google Scholar 

  142. Bennink, R. S., Bentley, S. J. & Boyd, R. W. ‘Two-photon’ coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002).

    Article  ADS  Google Scholar 

  143. Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005).

    Article  ADS  Google Scholar 

  144. Klyshko, D. Utilization of vacuum fluctuations as an optical brightness standard. Sov. J. Quantum Electron. 7, 591 (1977).

    Article  ADS  Google Scholar 

  145. Hong, C. & Mandel, L. Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58–60 (1986).

    Article  ADS  Google Scholar 

  146. Rarity, J., Tapster, P. & Jakeman, E. Observation of sub-poissonian light in parametric downconversion. Opt. Commun. 62, 201–206 (1987).

    Article  ADS  Google Scholar 

  147. Laurat, J., Coudreau, T., Treps, N., Maître, A. & Fabre, C. Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams. Phys. Rev. Lett. 91, 213601 (2003).

    Article  ADS  Google Scholar 

  148. Iskhakov, T. S. et al. Heralded source of bright multi-mode mesoscopic sub-Poissonian light. Opt. Lett. 41, 2149–2152 (2016).

    Article  ADS  Google Scholar 

  149. Brambilla, E., Caspani, L., Jedrkiewicz, O., Lugiato, L. & Gatti, A. High-sensitivity imaging with multi-mode twin beams. Phys. Rev. A 77, 053807 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

W.P.B. acknowledges support from the Air Force Office of Scientific Research under awards nos. FA9550-20-1-0391 and FA9550-22-1-0047, the Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS, CE170100009) and the Australian Research Council Centre of Excellence in Quantum Biotechnology (QUBIC, CE230100021). H.D. acknowledges funding from an ERC Starting Grant (grant no. SQIMIC-101039375). G.B.L. acknowledges CAPES, CNPq and FAPERJ (JCNE, E-26/201.438/2021) from the John Templeton Foundation (grant no. 62424). S.R. acknowledges funding by the Federal Ministry of Education and Research (BMBF) under projects nos. 13N16384, 13N15402 and 13N15944, as well as by the Einstein Foundation Berlin (EJF-2021-681). D.F. is supported by the Royal Academy of Engineering through the Chairs in Emerging Technologies programme and the UKRI Frontier Research scheme.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing the Review.

Corresponding author

Correspondence to Hugo Defienne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Markus Gräfe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defienne, H., Bowen, W.P., Chekhova, M. et al. Advances in quantum imaging. Nat. Photon. 18, 1024–1036 (2024). https://doi.org/10.1038/s41566-024-01516-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01516-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing