Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmon-enhanced ultralow-threshold solid-state triplet fusion upconversion

Abstract

Triplet fusion upconversion has potential applications in solar cells, photoredox catalysis, additive manufacturing and bioimaging. However, solid-state upconversion systems have struggled to measure up to their solution-phase counterparts, often requiring enormous optical power densities to operate at the maximum efficiency. Here we substantially improve the performance of upconversion films through excitation with surface plasmons that propagate along a planar silver-film interface, leading to an absorption enhancement that reduces the intensity threshold Ith by a factor of 19 and enhances the external quantum efficiency by a factor of 17. From this, we achieve Ith values as low as 3.4 mW cm−2 and an external quantum efficiency up to 0.094%. To demonstrate real-world viability, we couple the upconversion film to plasmons generated by the near-field of excitons in an organic light-emitting diode. This scheme is then used to fabricate a white-emitting organic light-emitting diode where blue emission sources from plasmon-excited upconversion, achieving a high colour rendering index of 86.2 and setting precedent for blue emission in the absence of high-energy polarons or triplets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism and device schematic.
Fig. 2: Plasmon-enhanced TF upconversion with Kretschmann geometry.
Fig. 3: Driving upconversion with OLED plasmons.
Fig. 4: WOLED with blue upconverted emission.

Similar content being viewed by others

Data availability

All data are available from the corresponding author upon reasonable request.

References

  1. Nadort, A., Zhao, J. & Goldys, E. M. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016).

    Article  ADS  Google Scholar 

  2. Lin, Y. L. et al. Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet–triplet annihilation. Energy Environ. Sci. 10, 1465–1475 (2017).

    Article  Google Scholar 

  3. Sheng, W. et al. Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for high-performance perovskite solar cells. Energy Environ. Sci. 14, 3532–3541 (2021).

    Article  Google Scholar 

  4. Li, C. et al. Photocurrent enhancement from solid-state triplet–triplet annihilation upconversion of low-intensity, low-energy photons. ACS Photonics 3, 784–790 (2016).

    Article  Google Scholar 

  5. Beery, D., Wheeler, J. P., Arcidiacono, A. & Hanson, K. CdSe quantum dot sensitized molecular photon upconversion solar cells. ACS Appl. Energy Mater. 3, 29–37 (2020).

    Article  Google Scholar 

  6. Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019).

    Article  ADS  Google Scholar 

  7. Zhu, X., Su, Q., Feng, W. & Li, F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 46, 1025–1039 (2017).

    Article  Google Scholar 

  8. Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

    Article  ADS  Google Scholar 

  9. Gray, V., Moth-Poulsen, K., Albinsson, B. & Abrahamsson, M. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018).

    Article  Google Scholar 

  10. Alves, J., Feng, J., Nienhaus, L. & Schmidt, T. W. Challenges, progress and prospects in solid state triplet fusion upconversion. J. Mater. Chem. C 10, 7783–7798 (2022).

    Article  Google Scholar 

  11. Lin, T.-A., Perkinson, C. F. & Baldo, M. A. Strategies for high-performance solid-state triplet–triplet-annihilation-based photon upconversion. Adv. Mater. 32, 1908175 (2020).

    Article  Google Scholar 

  12. Ogawa, T. et al. Donor–acceptor–collector ternary crystalline films for efficient solid-state photon upconversion. J. Am. Chem. Soc. 140, 8788–8796 (2018).

    Article  ADS  Google Scholar 

  13. Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2016).

    Article  ADS  Google Scholar 

  14. Wu, T. C., Congreve, D. N. & Baldo, M. A. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer. Appl. Phys. Lett. 107, 031103 (2015).

    Article  ADS  Google Scholar 

  15. Izawa, S. & Hiramoto, M. Efficient solid-state photon upconversion enabled by triplet formation at an organic semiconductor interface. Nat. Photon. 15, 895–900 (2021).

    Article  ADS  Google Scholar 

  16. Hu, M. et al. Bulk heterojunction upconversion thin films fabricated via one-step solution deposition. ACS Nano 17, 22642–22655 (2023).

    Article  Google Scholar 

  17. Wu, D. M., García-Etxarri, A., Salleo, A. & Dionne, J. A. Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5, 4020–4031 (2014).

    Article  Google Scholar 

  18. Honda, J., Sugawa, K., Tahara, H. & Otsuki, J. Plasmonic metal nanostructures meet triplet–triplet annihilation-based photon upconversion systems: performance improvements and application trends. Nanomaterials 13, 1559 (2023).

    Article  Google Scholar 

  19. Bangle, R. E., Li, H. & Mikkelsen, M. H. Uncovering the mechanisms of triplet–triplet annihilation upconversion enhancement via plasmonic nanocavity tuning. ACS Nano 17, 24022–24032 (2023).

    Article  Google Scholar 

  20. Bujak, Ł, Narushima, K., Sharma, D. K., Hirata, S. & Vacha, M. Plasmon enhancement of triplet exciton diffusion revealed by nanoscale imaging of photochemical fluorescence upconversion. J. Phys. Chem. C 121, 25479–25486 (2017).

    Article  Google Scholar 

  21. Baluschev, S. et al. Metal-enhanced up-conversion fluorescence: effective triplet−triplet annihilation near silver surface. Nano Lett. 5, 2482–2484 (2005).

    Article  ADS  Google Scholar 

  22. Park, J. K. et al. Enhanced triplet–triplet annihilation in bicomponent organic systems by using a gap plasmon resonator. Nanoscale 7, 12828–12832 (2015).

    Article  ADS  Google Scholar 

  23. Poorkazem, K., Hesketh, A. V. & Kelly, T. L. Plasmon-enhanced triplet–triplet annihilation using silver nanoplates. J. Phys. Chem. C 118, 6398–6404 (2014).

    Article  Google Scholar 

  24. Wisch, J. A. et al. Plasmon mediated near-field energy transfer from solid-state, electrically injected excitons to solution phase chromophores. Adv. Funct. Mater. 33, 2214367 (2023).

    Article  ADS  Google Scholar 

  25. An, K. H., Shtein, M. & Pipe, K. P. Surface plasmon mediated energy transfer of electrically-pumped excitons. Opt. Express 18, 4041–4048 (2010).

    Article  ADS  Google Scholar 

  26. Andrew, P. & Barnes, W. L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004).

    Article  ADS  Google Scholar 

  27. Chen, Y., Chen, J., Zhao, Y. & Ma, D. High efficiency blue phosphorescent organic light-emitting diode based on blend of hole- and electron-transporting materials as a co-host. Appl. Phys. Lett. 100, 213301 (2012).

    Article  ADS  Google Scholar 

  28. Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4–6 (1999).

    Article  ADS  Google Scholar 

  29. Sambles, J. R., Bradbery, G. W. & Yang, F. Optical excitation of surface plasmons: an introduction. Contemp. Phys. 32, 173–183 (1991).

    Article  ADS  Google Scholar 

  30. Giebink, N. C. et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103, 044509 (2008).

    Article  ADS  Google Scholar 

  31. Giebink, N. C., D’Andrade, B. W., Weaver, M. S., Brown, J. J. & Forrest, S. R. Direct evidence for degradation of polaron excited states in organic light emitting diodes. J. Appl. Phys. 105, 124514 (2009).

    Article  ADS  Google Scholar 

  32. Fusella, M. A. et al. Plasmonic enhancement of stability and brightness in organic light-emitting devices. Nature 585, 379–382 (2020).

    Article  ADS  Google Scholar 

  33. Fusella, M. et al. Optimizing plasmonic PHOLEDs for efficiency, stability, and angular profile. In Proc. International Display Workshops 544 (IDW, 2023).

  34. Zhao, H., Arneson, C. E., Fan, D. & Forrest, S. R. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300–305 (2024).

    Article  ADS  Google Scholar 

  35. Aldrich, M. pspectro: photometric and colorimetric calculations (MATLAB, 2025); https://www.mathworks.com/matlabcentral/fileexchange/28185-pspectro-photometric-and-colorimetric-calculations

Download references

Acknowledgements

J.A.W., B.P.R., E.O.D. and F.N.C. acknowledge support from BioLEC, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0019370. We thank N. C. Giebink for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.A.W. conceived the ideas and experiments for this work, conducted the experiments, analysed the data and wrote the paper. K.A.G., A.C.L., Y.Q.L., T.U.J., E.O.D., H.T.K. and S.S.L. conducted the experiments and analysed the data. B.P.R. conceived the ideas and experiments for this work, supervised the project and edited the paper. F.N.C. supervised the project and edited the paper. All authors read and approved the final version of the paper.

Corresponding author

Correspondence to Barry P. Rand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Photonics thanks Tae-Woo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–17, Figs. 1–15 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wisch, J.A., Green, K.A., Lemay, A.C. et al. Plasmon-enhanced ultralow-threshold solid-state triplet fusion upconversion. Nat. Photon. 20, 24–30 (2026). https://doi.org/10.1038/s41566-025-01783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01783-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing