Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress in quantum structured light

Abstract

Photons can be structured in space and time, blending quantum information and structured light in the context of high-dimensional and multidimensional entanglement. This opens a pathway to richly textured Hilbert spaces, high-information-capacity photons and exciting applications that exploit the new multiple-degrees-of-freedom modalities of quantum structured light. Progress has accelerated of late, driven by a modern toolkit comprising both bulk and on-chip solutions, taming dimensionality and unlocking exciting applications from imaging and sensing to networks and communication. In this Review we aim to capture this exciting inflection point, where quantum structured light can finally be harnessed to realize its full potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-dimensional and multidimensional quantum structured light.
Fig. 2: Detection and characterization of high-dimensional states.
Fig. 3: Toolkit for high-dimensional quantum structured light.
Fig. 4: Applications of quantum structured light.

Similar content being viewed by others

References

  1. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  2. Nape, I., Sephton, B., Ornelas, P., Moodley, C. & Forbes, A. Quantum structured light in high dimensions. APL Photon. 8, 051101 (2023).

    Article  ADS  Google Scholar 

  3. Zhang, Z. et al. Entanglement-based quantum information technology: a tutorial. Adv. Opt. Photon. 16, 60–162 (2024).

    Article  Google Scholar 

  4. Kaur, T., Peace, D. & Romero, J. On-chip high-dimensional entangled photon sources. J. Opt. 27, 023001 (2025).

    Article  ADS  Google Scholar 

  5. Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

    Article  ADS  Google Scholar 

  6. Cozzolino, D., Da Lio, B., Bacco, D. & Oxenløwe, L. K. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2, 1900038 (2019).

    Article  Google Scholar 

  7. Defienne, H. et al. Advances in quantum imaging. Nat. Photon. 18, 1024–1036 (2024).

    Article  ADS  Google Scholar 

  8. Cheng, M., Jiang, W., Guo, L., Li, J. & Forbes, A. Metrology with a twist: probing and sensing with vortex light. Light Sci. Appl. 14, 4 (2025).

    Article  ADS  Google Scholar 

  9. McLaren, M., Mhlanga, T., Padgett, M., Roux, F. & Forbes, A. Self-healing of quantum entanglement after an obstruction. Nat. Commun. 5, 3248 (2014).

    Article  ADS  Google Scholar 

  10. Lib, O. & Bromberg, Y. Spatially entangled airy photons. Opt. Lett. 45, 1399–1402 (2020).

    Article  ADS  Google Scholar 

  11. Gomes, R., Salles, A., Toscano, F., Ribeiro, P. S. & Walborn, S. Observation of a nonlocal optical vortex. Phys. Rev. Lett. 103, 033602 (2009).

    Article  ADS  Google Scholar 

  12. Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photon. 18, 258–266 (2024).

    Article  ADS  Google Scholar 

  13. Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Topological rejection of noise by quantum skyrmions. Nat. Commun. 16, 2934 (2025).

    Article  ADS  Google Scholar 

  14. Schiano, C. et al. Engineering quantum states from a spatially structured quantum eraser. Sci. Adv. 10, eadm9278 (2024).

    Article  Google Scholar 

  15. Yoshikawa, J.-I. et al. Invited article: generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1, 060801 (2016).

    Article  ADS  Google Scholar 

  16. Yu, H. et al. Quantum key distribution implemented with d-level time-bin entangled photons. Nat. Commun. 16, 171 (2025).

    Article  ADS  Google Scholar 

  17. Chapman, J. C., Lim, C. C. & Kwiat, P. G. Hyperentangled time-bin and polarization quantum key distribution. Phys. Rev. Appl. 18, 044027 (2022).

    Article  ADS  Google Scholar 

  18. Sit, A. et al. Ultrafast all-optical modulation of spatially structured photons. Preprint at https://arxiv.org/abs/2504.05464 (2025).

  19. Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    Article  ADS  Google Scholar 

  20. Liu, S. et al. Deterministic all-optical quantum teleportation of four degrees of freedom. Phys. Rev. Lett. 132, 100801 (2024).

    Article  ADS  Google Scholar 

  21. Kopf, L., Barros, R. & Fickler, R. Correlating space, wavelength, and polarization of light: spatiospectral vector beams. ACS Photon. 11, 241–246 (2023).

    Article  Google Scholar 

  22. Graffitti, F. et al. Hyperentanglement in structured quantum light. Phys. Rev. Res. 2, 043350 (2020).

    Article  Google Scholar 

  23. Wang, J. et al. Spatiotemporal single-photon airy bullets. Phys. Rev. Lett. 132, 143601 (2024).

    Article  ADS  Google Scholar 

  24. Mahmudlu, H. et al. Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation. Nat. Photon. 17, 518–524 (2023).

    Article  ADS  Google Scholar 

  25. Kan, Y. et al. High-dimensional spin-orbital single-photon sources. Sci. Adv. 10, eadq6298 (2024).

    Article  ADS  Google Scholar 

  26. Zhao, H. et al. Integrated preparation and manipulation of high-dimensional flying structured photons. eLight 4, 10 (2024).

    Article  Google Scholar 

  27. Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019).

    Article  Google Scholar 

  28. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  29. Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).

    Article  Google Scholar 

  30. Nape, I. et al. Measuring dimensionality and purity of high-dimensional entangled states. Nat. Commun. 12, 1–8 (2021).

    Article  Google Scholar 

  31. Rambach, M. et al. Robust and efficient high-dimensional quantum state tomography. Phys. Rev. Lett. 126, 100402 (2021).

    Article  ADS  Google Scholar 

  32. Fontaine, N. K. et al. Laguerre-Gaussian mode sorter. Nat. Commun. 10, 1–7 (2019).

    Article  ADS  Google Scholar 

  33. Edgar, M. P. et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 3, 984 (2012).

    Article  ADS  Google Scholar 

  34. Zia, D., Dehghan, N., D’Errico, A., Sciarrino, F. & Karimi, E. Interferometric imaging of amplitude and phase of spatial biphoton states. Nat. Photon. 17, 1009–1016 (2023).

    Article  ADS  Google Scholar 

  35. Courme, B., Cameron, P., Faccio, D., Gigan, S. & Defienne, H. Manipulation and certification of high-dimensional entanglement through a scattering medium. PRX Quantum 4, 010308 (2023).

    Article  ADS  Google Scholar 

  36. Gao, X. et al. Full spatial characterization of entangled structured photons. Phys. Rev. Lett. 132, 063802 (2024).

    Article  ADS  Google Scholar 

  37. Zhao, J. et al. Efficient measurement of orbital angular momentum entanglement using convolutional neural network. Laser Photon. Rev. 19, 2400720 (2025).

    Article  ADS  Google Scholar 

  38. Widomski, A., Ogrodnik, M. & Karpiński, M. Efficient detection of multidimensional single-photon time-bin superpositions. Optica 11, 926–931 (2024).

    Article  ADS  Google Scholar 

  39. Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).

    Article  ADS  Google Scholar 

  40. Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 5, 210174–1 (2022).

    Article  Google Scholar 

  41. Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics—the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024).

    Article  ADS  Google Scholar 

  42. Ansari, V. et al. Tomography and purification of the temporal-mode structure of quantum light. Phys. Rev. Lett. 120, 213601 (2018).

    Article  ADS  Google Scholar 

  43. Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).

    Article  ADS  Google Scholar 

  44. Serino, L., Eigner, C., Brecht, B. & Silberhorn, C. Programmable time-frequency mode-sorting of single photons with a multi-output quantum pulse gate. Opt. Express 33, 5577–5586 (2025).

    Article  ADS  Google Scholar 

  45. Serino, L., Rambach, M., Brecht, B., Romero, J. & Silberhorn, C. Self-guided tomography of time-frequency qudits. Quantum Sci. Technol. 10, 025024 (2025).

    Article  ADS  Google Scholar 

  46. Weiss, T. F. & Peruzzo, A. Nonlinear domain engineering for quantum technologies. Appl. Phys. Rev. 12, 011318 (2025).

    Article  ADS  Google Scholar 

  47. Rozenberg, E. et al. Inverse design of spontaneous parametric downconversion for generation of high-dimensional qudits. Optica 9, 602–615 (2022).

    Article  ADS  Google Scholar 

  48. Kysela, J., Erhard, M., Hochrainer, A., Krenn, M. & Zeilinger, A. Path identity as a source of high-dimensional entanglement. Proc. Natl Acad. Sci. USA 117, 26118–26122 (2020).

    Article  ADS  Google Scholar 

  49. Yesharim, O., Hurvitz, I., Foley-Comer, J. & Arie, A. Bulk nonlinear metamaterials for generation of quantum light. Appl. Phys. Rev. 12, 011323 (2025).

    Article  ADS  Google Scholar 

  50. Sephton, B. et al. Quantum transport of high-dimensional spatial information with a nonlinear detector. Nat. Commun. 14, 8243 (2023).

    Article  ADS  Google Scholar 

  51. Qiu, X., Guo, H. & Chen, L. Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion. Nat. Commun. 14, 8244 (2023).

    Article  ADS  Google Scholar 

  52. Akin, J., Zhao, Y., Kwiat, P. G., Goldschmidt, E. A. & Fang, K. Faithful quantum teleportation via a nanophotonic nonlinear bell state analyzer. Phys. Rev. Lett. 134, 160802 (2025).

    Article  ADS  Google Scholar 

  53. Brandt, F., Hiekkamäki, M., Bouchard, F., Huber, M. & Fickler, R. High-dimensional quantum gates using full-field spatial modes of photons. Optica 7, 98–107 (2020).

    Article  ADS  Google Scholar 

  54. Dahl, D. S., Plöschner, M., Fontaine, N. K., Romero, J. & Carpenter, J. Programable high-dimensional quantum gates via mplc. In Frontiers in Optics https://doi.org/10.1364/fio.2024.fm5c.5 (Optica, 2024).

  55. Goel, S. et al. Simultaneously sorting overlapping quantum states of light. Phys. Rev. Lett. 130, 143602 (2023).

    Article  ADS  Google Scholar 

  56. Goel, S. et al. Inverse design of high-dimensional quantum optical circuits in a complex medium. Nat. Phys. 20, 232–239 (2024).

    Article  Google Scholar 

  57. Lib, O. & Bromberg, Y. Resource-efficient photonic quantum computation with high-dimensional cluster states. Nat. Photon. 18, 1218–1224 (2024).

    Article  ADS  Google Scholar 

  58. Bouchard, F. et al. Programmable photonic quantum circuits with ultrafast time-bin encoding. Phys. Rev. Lett. 133, 090601 (2024).

    Article  ADS  Google Scholar 

  59. Monika, M. et al. Quantum state processing through controllable synthetic temporal photonic lattices. Nat. Photon. 19, 95–100 (2025).

    Article  ADS  Google Scholar 

  60. Imany, P. et al. High-dimensional optical quantum logic in large operational spaces. npj Quantum Inf. 5, 59 (2019).

    Article  ADS  Google Scholar 

  61. Folge, P., Stefszky, M., Brecht, B. & Silberhorn, C. A framework for fully programmable frequency-encoded quantum networks harnessing multioutput quantum pulse gates. PRX Quantum 5, 040329 (2024).

    Article  ADS  Google Scholar 

  62. Montaut, N. et al. Progress in integrated and fiber optics for time-bin based quantum information processing. Adv. Opt. Technol. 14, 1560084 (2025).

    Article  ADS  Google Scholar 

  63. Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    Article  ADS  Google Scholar 

  64. Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article  ADS  Google Scholar 

  65. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  ADS  Google Scholar 

  66. Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023).

    Article  ADS  Google Scholar 

  67. Huang, J. et al. Integrated optical entangled quantum vortex emitters. Nat. Photon. 19, 471–478 (2025).

  68. Wang, C. et al. Non-Hermitian optics and photonics: from classical to quantum. Adv. Opt. Photon. 15, 442–523 (2023).

    Article  Google Scholar 

  69. Zhang, Y. et al. High-dimensional quantum key distribution by a spin-orbit microlaser. Phys. Rev. 15, 011024 (2025).

    Article  Google Scholar 

  70. Valencia, N. H., Goel, S., McCutcheon, W., Defienne, H. & Malik, M. Unscrambling entanglement through a complex medium. Nat. Phys. 16, 1112–1116 (2020).

    Article  Google Scholar 

  71. Cozzolino, D. et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photon. 1, 046005 (2019).

    Article  ADS  Google Scholar 

  72. Zahidy, M. et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber. Nat. Commun. 15, 1651 (2024).

    Article  ADS  Google Scholar 

  73. Liu, J. et al. Multidimensional entanglement transport through single-mode fiber. Sci. Adv. 6, eaay0837 (2020).

    Article  ADS  Google Scholar 

  74. Wang, X., Fu, J., Liu, S., Wei, Y. & Jing, J. Self-healing of multipartite entanglement in optical quantum networks. Optica 9, 663–669 (2022).

    Article  ADS  Google Scholar 

  75. Nicolas, A., et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014).

    Article  ADS  Google Scholar 

  76. Ye, Y.-H. et al. Long-lived memory for orbital angular momentum quantum states. Phys. Rev. Lett. 129, 193601 (2022).

    Article  ADS  Google Scholar 

  77. Kim, B. et al. Qudit-based variational quantum eigensolver using photonic orbital angular momentum states. Sci. Adv. 10, eado3472 (2024).

    Article  Google Scholar 

  78. Koni, M., Bezuidenhout, H. & Nape, I. Emulating quantum computing with optical matrix multiplication. APL Photon. 9, 106120 (2024).

    Article  ADS  Google Scholar 

  79. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  ADS  Google Scholar 

  80. Weng, H.-C. & Chuu, C.-S. Implementation of Sshor’s algorithm with a single photon in 32 dimensions. Phys. Rev. Appl. 22, 034003 (2024).

    Article  ADS  Google Scholar 

  81. Zhu, C.-X., Zhou, X., Guo, G.-C. & Zhou, Z.-W. Sawtooth lattice in a photonic orbital-angular-momentum simulation system. Phys. Rev. A 108, 043507 (2023).

    Article  ADS  Google Scholar 

  82. Cardano, F. et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087 (2015).

    Article  ADS  Google Scholar 

  83. Esposito, C. et al. Quantum walks of two correlated photons in a 2D synthetic lattice. npj Quantum Inf. 8, 34 (2022).

    Article  ADS  Google Scholar 

  84. Vernière, C. & Defienne, H. Hiding images in quantum correlations. Phys. Rev. Lett. 133, 093601 (2024).

    Article  ADS  Google Scholar 

  85. Johnson, S., Rarity, J. & Padgett, M. Transmission of quantum-secured images. Sci. Rep. 14, 11579 (2024).

    Article  ADS  Google Scholar 

  86. Zhang, Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024).

    Article  Google Scholar 

  87. Nothlawala, F., Moodley, C., Gounden, N., Nape, I. & Forbes, A. Quantum ghost imaging by sparse spatial mode reconstruction. Adv. Quantum Technol. 8, 2400577 (2025).

    Article  Google Scholar 

  88. Grenapin, F. et al. Superresolution enhancement in biphoton spatial-mode demultiplexing. Phys. Rev. Appl. 20, 024077 (2023).

    Article  ADS  Google Scholar 

  89. Kong, L.-J., Sun, Y., Zhang, F., Zhang, J. & Zhang, X. High-dimensional entanglement-enabled holography. Phys. Rev. Lett. 130, 053602 (2023).

    Article  ADS  Google Scholar 

  90. Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).

    Article  Google Scholar 

  91. Kong, L.-J., Zhang, J., Zhang, Z. & Zhang, X. Quantum holographic microscopy. Laser Photon. Rev. 19, 2401909 (2025).

    Article  ADS  Google Scholar 

  92. Polino, E., Valeri, M., Spagnolo, N. & Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).

    Article  ADS  Google Scholar 

  93. D’ambrosio, V. et al. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 4, 2432 (2013).

    Article  ADS  Google Scholar 

  94. Yesharim, O., Tshuva, G. & Arie, A. Quantum enhanced mechanical rotation sensing using wavefront photonic gears. APL Photon. 9, 106116 (2024).

    Article  ADS  Google Scholar 

  95. Hiekkamäki, M., Bouchard, F. & Fickler, R. Photonic angular super-resolution using twisted N00N states. Phys. Rev. Lett. 127, 263601 (2021).

    Article  ADS  Google Scholar 

  96. Eriksson, M. et al. Sensing rotations with multiplane light conversion. Phys. Rev. Appl. 20, 024052 (2023).

    Article  ADS  Google Scholar 

  97. Tischler, N. et al. Quantum optical rotatory dispersion. Sci. Adv. 2, e1601306 (2016).

    Article  ADS  Google Scholar 

  98. Hong, L., Cao, X., Chen, Y. & Chen, L. Hong–Ou–Mandel interference of spin–orbit hybrid entangled photons. APL Photon. 8, 126103 (2023).

    Article  ADS  Google Scholar 

  99. Liu, X., Cao, Q. & Zhan, Q. Spatiotemporal optical wavepackets: from concepts to applications. Photon. Insights 3, R08 (2024).

    Article  Google Scholar 

  100. Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article  ADS  Google Scholar 

  101. de Mello Koch, R., Lu, B.-Q., Ornelas, P., Nape, I. & Forbes, A. Quantum skyrmions in general quantum channels. APL Quantum 2, 026126 (2025).

    Article  Google Scholar 

  102. Yan, Q. et al. Quantum topological photonics. Adv. Opt. Mater. 9, 2001739 (2021).

    Article  Google Scholar 

  103. Ma, Z., Kristensen, P. & Ramachandran, S. Scaling information pathways in optical fibers by topological confinement. Science 380, 278–282 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  104. Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photon. 18, 15–25 (2024).

    Article  ADS  Google Scholar 

  105. Liu, X. et al. Ultracompact single-photon sources of linearly polarized vortex beams. Adv. Mater. 36, 2304495 (2024).

    Article  Google Scholar 

  106. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.F. thanks SA QuTI for financial support. A.V. acknowledges financial support from the Ramón y Cajal Fellowship RYC2023-043066-I, funded by MICIU/AEI/10.13039/501100011033 and FSE+.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this Review.

Corresponding author

Correspondence to Andrew Forbes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, A., Nothlawala, F. & Vallés, A. Progress in quantum structured light. Nat. Photon. 19, 1291–1300 (2025). https://doi.org/10.1038/s41566-025-01795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01795-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing