Abstract
Photons can be structured in space and time, blending quantum information and structured light in the context of high-dimensional and multidimensional entanglement. This opens a pathway to richly textured Hilbert spaces, high-information-capacity photons and exciting applications that exploit the new multiple-degrees-of-freedom modalities of quantum structured light. Progress has accelerated of late, driven by a modern toolkit comprising both bulk and on-chip solutions, taming dimensionality and unlocking exciting applications from imaging and sensing to networks and communication. In this Review we aim to capture this exciting inflection point, where quantum structured light can finally be harnessed to realize its full potential.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).
Nape, I., Sephton, B., Ornelas, P., Moodley, C. & Forbes, A. Quantum structured light in high dimensions. APL Photon. 8, 051101 (2023).
Zhang, Z. et al. Entanglement-based quantum information technology: a tutorial. Adv. Opt. Photon. 16, 60–162 (2024).
Kaur, T., Peace, D. & Romero, J. On-chip high-dimensional entangled photon sources. J. Opt. 27, 023001 (2025).
Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).
Cozzolino, D., Da Lio, B., Bacco, D. & Oxenløwe, L. K. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2, 1900038 (2019).
Defienne, H. et al. Advances in quantum imaging. Nat. Photon. 18, 1024–1036 (2024).
Cheng, M., Jiang, W., Guo, L., Li, J. & Forbes, A. Metrology with a twist: probing and sensing with vortex light. Light Sci. Appl. 14, 4 (2025).
McLaren, M., Mhlanga, T., Padgett, M., Roux, F. & Forbes, A. Self-healing of quantum entanglement after an obstruction. Nat. Commun. 5, 3248 (2014).
Lib, O. & Bromberg, Y. Spatially entangled airy photons. Opt. Lett. 45, 1399–1402 (2020).
Gomes, R., Salles, A., Toscano, F., Ribeiro, P. S. & Walborn, S. Observation of a nonlocal optical vortex. Phys. Rev. Lett. 103, 033602 (2009).
Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photon. 18, 258–266 (2024).
Ornelas, P., Nape, I., de Mello Koch, R. & Forbes, A. Topological rejection of noise by quantum skyrmions. Nat. Commun. 16, 2934 (2025).
Schiano, C. et al. Engineering quantum states from a spatially structured quantum eraser. Sci. Adv. 10, eadm9278 (2024).
Yoshikawa, J.-I. et al. Invited article: generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1, 060801 (2016).
Yu, H. et al. Quantum key distribution implemented with d-level time-bin entangled photons. Nat. Commun. 16, 171 (2025).
Chapman, J. C., Lim, C. C. & Kwiat, P. G. Hyperentangled time-bin and polarization quantum key distribution. Phys. Rev. Appl. 18, 044027 (2022).
Sit, A. et al. Ultrafast all-optical modulation of spatially structured photons. Preprint at https://arxiv.org/abs/2504.05464 (2025).
Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).
Liu, S. et al. Deterministic all-optical quantum teleportation of four degrees of freedom. Phys. Rev. Lett. 132, 100801 (2024).
Kopf, L., Barros, R. & Fickler, R. Correlating space, wavelength, and polarization of light: spatiospectral vector beams. ACS Photon. 11, 241–246 (2023).
Graffitti, F. et al. Hyperentanglement in structured quantum light. Phys. Rev. Res. 2, 043350 (2020).
Wang, J. et al. Spatiotemporal single-photon airy bullets. Phys. Rev. Lett. 132, 143601 (2024).
Mahmudlu, H. et al. Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation. Nat. Photon. 17, 518–524 (2023).
Kan, Y. et al. High-dimensional spin-orbital single-photon sources. Sci. Adv. 10, eadq6298 (2024).
Zhao, H. et al. Integrated preparation and manipulation of high-dimensional flying structured photons. eLight 4, 10 (2024).
Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019).
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).
Nape, I. et al. Measuring dimensionality and purity of high-dimensional entangled states. Nat. Commun. 12, 1–8 (2021).
Rambach, M. et al. Robust and efficient high-dimensional quantum state tomography. Phys. Rev. Lett. 126, 100402 (2021).
Fontaine, N. K. et al. Laguerre-Gaussian mode sorter. Nat. Commun. 10, 1–7 (2019).
Edgar, M. P. et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 3, 984 (2012).
Zia, D., Dehghan, N., D’Errico, A., Sciarrino, F. & Karimi, E. Interferometric imaging of amplitude and phase of spatial biphoton states. Nat. Photon. 17, 1009–1016 (2023).
Courme, B., Cameron, P., Faccio, D., Gigan, S. & Defienne, H. Manipulation and certification of high-dimensional entanglement through a scattering medium. PRX Quantum 4, 010308 (2023).
Gao, X. et al. Full spatial characterization of entangled structured photons. Phys. Rev. Lett. 132, 063802 (2024).
Zhao, J. et al. Efficient measurement of orbital angular momentum entanglement using convolutional neural network. Laser Photon. Rev. 19, 2400720 (2025).
Widomski, A., Ogrodnik, M. & Karpiński, M. Efficient detection of multidimensional single-photon time-bin superpositions. Optica 11, 926–931 (2024).
Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).
Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 5, 210174–1 (2022).
Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics—the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024).
Ansari, V. et al. Tomography and purification of the temporal-mode structure of quantum light. Phys. Rev. Lett. 120, 213601 (2018).
Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).
Serino, L., Eigner, C., Brecht, B. & Silberhorn, C. Programmable time-frequency mode-sorting of single photons with a multi-output quantum pulse gate. Opt. Express 33, 5577–5586 (2025).
Serino, L., Rambach, M., Brecht, B., Romero, J. & Silberhorn, C. Self-guided tomography of time-frequency qudits. Quantum Sci. Technol. 10, 025024 (2025).
Weiss, T. F. & Peruzzo, A. Nonlinear domain engineering for quantum technologies. Appl. Phys. Rev. 12, 011318 (2025).
Rozenberg, E. et al. Inverse design of spontaneous parametric downconversion for generation of high-dimensional qudits. Optica 9, 602–615 (2022).
Kysela, J., Erhard, M., Hochrainer, A., Krenn, M. & Zeilinger, A. Path identity as a source of high-dimensional entanglement. Proc. Natl Acad. Sci. USA 117, 26118–26122 (2020).
Yesharim, O., Hurvitz, I., Foley-Comer, J. & Arie, A. Bulk nonlinear metamaterials for generation of quantum light. Appl. Phys. Rev. 12, 011323 (2025).
Sephton, B. et al. Quantum transport of high-dimensional spatial information with a nonlinear detector. Nat. Commun. 14, 8243 (2023).
Qiu, X., Guo, H. & Chen, L. Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion. Nat. Commun. 14, 8244 (2023).
Akin, J., Zhao, Y., Kwiat, P. G., Goldschmidt, E. A. & Fang, K. Faithful quantum teleportation via a nanophotonic nonlinear bell state analyzer. Phys. Rev. Lett. 134, 160802 (2025).
Brandt, F., Hiekkamäki, M., Bouchard, F., Huber, M. & Fickler, R. High-dimensional quantum gates using full-field spatial modes of photons. Optica 7, 98–107 (2020).
Dahl, D. S., Plöschner, M., Fontaine, N. K., Romero, J. & Carpenter, J. Programable high-dimensional quantum gates via mplc. In Frontiers in Optics https://doi.org/10.1364/fio.2024.fm5c.5 (Optica, 2024).
Goel, S. et al. Simultaneously sorting overlapping quantum states of light. Phys. Rev. Lett. 130, 143602 (2023).
Goel, S. et al. Inverse design of high-dimensional quantum optical circuits in a complex medium. Nat. Phys. 20, 232–239 (2024).
Lib, O. & Bromberg, Y. Resource-efficient photonic quantum computation with high-dimensional cluster states. Nat. Photon. 18, 1218–1224 (2024).
Bouchard, F. et al. Programmable photonic quantum circuits with ultrafast time-bin encoding. Phys. Rev. Lett. 133, 090601 (2024).
Monika, M. et al. Quantum state processing through controllable synthetic temporal photonic lattices. Nat. Photon. 19, 95–100 (2025).
Imany, P. et al. High-dimensional optical quantum logic in large operational spaces. npj Quantum Inf. 5, 59 (2019).
Folge, P., Stefszky, M., Brecht, B. & Silberhorn, C. A framework for fully programmable frequency-encoded quantum networks harnessing multioutput quantum pulse gates. PRX Quantum 5, 040329 (2024).
Montaut, N. et al. Progress in integrated and fiber optics for time-bin based quantum information processing. Adv. Opt. Technol. 14, 1560084 (2025).
Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).
Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023).
Huang, J. et al. Integrated optical entangled quantum vortex emitters. Nat. Photon. 19, 471–478 (2025).
Wang, C. et al. Non-Hermitian optics and photonics: from classical to quantum. Adv. Opt. Photon. 15, 442–523 (2023).
Zhang, Y. et al. High-dimensional quantum key distribution by a spin-orbit microlaser. Phys. Rev. 15, 011024 (2025).
Valencia, N. H., Goel, S., McCutcheon, W., Defienne, H. & Malik, M. Unscrambling entanglement through a complex medium. Nat. Phys. 16, 1112–1116 (2020).
Cozzolino, D. et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photon. 1, 046005 (2019).
Zahidy, M. et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber. Nat. Commun. 15, 1651 (2024).
Liu, J. et al. Multidimensional entanglement transport through single-mode fiber. Sci. Adv. 6, eaay0837 (2020).
Wang, X., Fu, J., Liu, S., Wei, Y. & Jing, J. Self-healing of multipartite entanglement in optical quantum networks. Optica 9, 663–669 (2022).
Nicolas, A., et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014).
Ye, Y.-H. et al. Long-lived memory for orbital angular momentum quantum states. Phys. Rev. Lett. 129, 193601 (2022).
Kim, B. et al. Qudit-based variational quantum eigensolver using photonic orbital angular momentum states. Sci. Adv. 10, eado3472 (2024).
Koni, M., Bezuidenhout, H. & Nape, I. Emulating quantum computing with optical matrix multiplication. APL Photon. 9, 106120 (2024).
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).
Weng, H.-C. & Chuu, C.-S. Implementation of Sshor’s algorithm with a single photon in 32 dimensions. Phys. Rev. Appl. 22, 034003 (2024).
Zhu, C.-X., Zhou, X., Guo, G.-C. & Zhou, Z.-W. Sawtooth lattice in a photonic orbital-angular-momentum simulation system. Phys. Rev. A 108, 043507 (2023).
Cardano, F. et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087 (2015).
Esposito, C. et al. Quantum walks of two correlated photons in a 2D synthetic lattice. npj Quantum Inf. 8, 34 (2022).
Vernière, C. & Defienne, H. Hiding images in quantum correlations. Phys. Rev. Lett. 133, 093601 (2024).
Johnson, S., Rarity, J. & Padgett, M. Transmission of quantum-secured images. Sci. Rep. 14, 11579 (2024).
Zhang, Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024).
Nothlawala, F., Moodley, C., Gounden, N., Nape, I. & Forbes, A. Quantum ghost imaging by sparse spatial mode reconstruction. Adv. Quantum Technol. 8, 2400577 (2025).
Grenapin, F. et al. Superresolution enhancement in biphoton spatial-mode demultiplexing. Phys. Rev. Appl. 20, 024077 (2023).
Kong, L.-J., Sun, Y., Zhang, F., Zhang, J. & Zhang, X. High-dimensional entanglement-enabled holography. Phys. Rev. Lett. 130, 053602 (2023).
Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).
Kong, L.-J., Zhang, J., Zhang, Z. & Zhang, X. Quantum holographic microscopy. Laser Photon. Rev. 19, 2401909 (2025).
Polino, E., Valeri, M., Spagnolo, N. & Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).
D’ambrosio, V. et al. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 4, 2432 (2013).
Yesharim, O., Tshuva, G. & Arie, A. Quantum enhanced mechanical rotation sensing using wavefront photonic gears. APL Photon. 9, 106116 (2024).
Hiekkamäki, M., Bouchard, F. & Fickler, R. Photonic angular super-resolution using twisted N00N states. Phys. Rev. Lett. 127, 263601 (2021).
Eriksson, M. et al. Sensing rotations with multiplane light conversion. Phys. Rev. Appl. 20, 024052 (2023).
Tischler, N. et al. Quantum optical rotatory dispersion. Sci. Adv. 2, e1601306 (2016).
Hong, L., Cao, X., Chen, Y. & Chen, L. Hong–Ou–Mandel interference of spin–orbit hybrid entangled photons. APL Photon. 8, 126103 (2023).
Liu, X., Cao, Q. & Zhan, Q. Spatiotemporal optical wavepackets: from concepts to applications. Photon. Insights 3, R08 (2024).
Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).
de Mello Koch, R., Lu, B.-Q., Ornelas, P., Nape, I. & Forbes, A. Quantum skyrmions in general quantum channels. APL Quantum 2, 026126 (2025).
Yan, Q. et al. Quantum topological photonics. Adv. Opt. Mater. 9, 2001739 (2021).
Ma, Z., Kristensen, P. & Ramachandran, S. Scaling information pathways in optical fibers by topological confinement. Science 380, 278–282 (2023).
Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photon. 18, 15–25 (2024).
Liu, X. et al. Ultracompact single-photon sources of linearly polarized vortex beams. Adv. Mater. 36, 2304495 (2024).
Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).
Acknowledgements
A.F. thanks SA QuTI for financial support. A.V. acknowledges financial support from the Ramón y Cajal Fellowship RYC2023-043066-I, funded by MICIU/AEI/10.13039/501100011033 and FSE+.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing of this Review.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Forbes, A., Nothlawala, F. & Vallés, A. Progress in quantum structured light. Nat. Photon. 19, 1291–1300 (2025). https://doi.org/10.1038/s41566-025-01795-x
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01795-x


